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ABSTRACT

We describe the efficient generation of robust numerical solutions for a Sedov

blast wave propagating through a polytropic gas characterized by a density gra-

dient ρ=ρ0 r−ω. We discuss all possible families of real solutions, in all common

geometries, and address all six removable singularities. The nature of the solu-

tions changes dramatically as ω and the adiabatic index γ vary. Implementation

of Sedov solutions requires extended precision arithmetic near the origin to avoid

running out of significant figures. We suggest several new problem definitions for

verifying hydrodynamic codes, and offer public domain modules to generate the

necessary closed-form solutions.

Subject headings: methods: analytical — methods: numerical — shock waves

1. Introduction

Over 60 years ago, von Neumann (1941), Taylor (1941), and Sedov (1946) independently

derived a self-similar description of the evolution of the blast wave arising from a powerful

explosion in a cold, uniform density background (also see Bethe et al. (1947)). They treated

the explosion as an instantaneous release of energy at a point and assumed that the back-

ground material through which the expanding blast sweeps behaves as an ideal polytropic

fluid. Later, Korobeinikov et al. (1962) extended the description to power-law initial back-

ground densities of the form ρ=ρ0 r−ω. It is remarkable that these models yield closed-form

expressions for the fluid quantities.

The venerable Sedov problem might appear to be an old, solved problem. However, there

is a paucity of papers that discuss the typographical errors in Sedov (1959) and Korobeinikov

et al. (1962), numerical implementation of all possible families of real solutions, in all common

geometries, and address all the removable singularities. Book (1991) and Kamm (2000) come

close, but both omit discussion of the singularities at the lower bounds of the energy integral.
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In this paper we gather together the results of these two papers (and others), extend them by

discussing all the removable singularities, and offer an instantiation of the ideas in a succinct

computer code.

Sedov solutions are commonly used to analyze portions of the evolution of a supernova

remnant, the interaction of ambient gas with stellar material ejected by a supernova. In

particular, the standard paradigm has this interaction characterized by four stages: ejecta-

dominated, Sedov-Taylor, pressure-driven snowplow, and momentum-conserving snowplow

(Chevalier 1976). The first two stages are commonly classified as nonradiative because

radiative losses are dynamically insignificant, although they may be of observational interest.

In the later stages, radiative evolution should be considered.

In addition, the constant density, spherically symmetric Sedov blast wave is stalwart

test case in the verification of hydrodynamic codes. It is not a particularly strenuous test

for a modern hydrocode, except perhaps for using Cartesian meshes to find the spherically

symmetric solution (Fryxell et al. 2000; Teyssier 2002; O’Shea et al. 2004; Dursi & Timmes

2006). In this paper we define several new verification problems for hydrodynamic codes

involving more challenging Sedov blast waves.

In §2 we describe the calculation of the four Sedov functions that describe the spatial

variation of density, material speed, and pressure with distance at any point in time. The

general behavior of these functions is analyzed as a function of ω and the adiabatic index γ

for various geometries. In §3 we use these Sedov functions to compute the energy integral,

taking a rigorous approach to removing the singularities at the lower integration limit. In

§4 we generate physical solutions for a number of types of Sedov blast waves, and offer

definitions for new code verification test problems. In the Appendix B we list key source

code modules for efficient generation of numerically robust Sedov solutions.

2. Calculating the Sedov functions

An energy Eblast is deposited at the origin at time zero in an infinite domain characterized

by a non-uniform density ρ = ρ0r
−ω, material speed v0, pressure P0, specific internal energy

E0, sound speed cs0, and adiabatic index γ. Here ρ0 and ω are constants. When the value

of ω is identically zero, the initial density is uniform. A solution for the complete physical

state is desired at any distance 0 < rwant < ∞ at any time 0 < twant < ∞.

To solve this problem Sedov (1959) considers the set of equations governing one-dimensional,
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compressible hydrodynamics:

ρt + v ρr +
ρ

rj−1

(
rj−1 v

)
r

= 0 , (1)

vt + v vr +
1

ρ
Pr = 0 , (2)

(P/ργ)t + u (P/ργ)r = 0 . (3)

The index j = 1, 2, or 3 is the dimensionality index for one-dimensional planar, cylindrical,

or spherical geometry, respectively. Note that to keep the total mass finite within the domain

of interest one must have 0 ≤ ω < j. The thermodynamics is assumed to be governed by

the incomplete equation of state (in the sense of Menikoff & Plohr (1989)) for a polytropic

gas

(γ − 1) E = P/ρ . (4)

Distinct from the analysis of Reinicke & Meyer-ter-Vehn (1991) or Shestakov (1999), heat

conduction is assumed to be negligible, so that purely hydrodynamic motion occurs.

One can begin a numerical solution by determining the family type to which the initial

conditions correspond (Kamm 2000). We begin by evaluating the immediate post-shock

velocity in the similarity variable V2 and the location of the singular point in this variable

V∗ :

V2 =
4

j + 2− ω
(5)

V∗ =
2

j(γ − 1) + 2
. (6)

These two quantities are sufficient to determine the type of solution: standard, singular,

or vacuum. In the standard case, a nonzero solution extends from the shock to the origin,

where the pressure is finite. In the singular case, a nonzero solution extends from the shock

to the origin, where the pressure vanishes. In the vacuum case, a nonzero solution extends

from the shock to a boundary point between the origin and the shock, where the density

vanishes. In particular, if

|V2 − V∗| ≤ ε (7)

then the solution type is singular, while if

V2 < V∗ − ε (8)

then the solution type is standard, while if

V2 > V∗ + ε (9)
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the solution is a vacuum type. Here ε is a “small” numerical parameter (∼ 10−4) assigned to

(i) avoid a hard zero and (ii) limit some of the exponents to be discussed below from becoming

sufficiently large to create numerical overflows. It is useful to note that the singular case

occurs at ω1 = (3j − 2 + γ(2− j))/(γ + 1).

Although the guiding differential equations for the similarity variables are analytic, the

Sedov functions and the energy integral to be discussed below become singular for various

combinations of ω, j and γ. These singularities, however, are only apparent: they are a

consequence of the way the solution is formulated. Two of these removable singularities,

using the notation of Book (1991), should be recorded at this point in the calculation. If

either

|ω − ω2| =
∣∣∣∣ω − [

2(γ − 1) + j

γ

]∣∣∣∣ ≤ ε (10)

or

|ω − ω3| = |ω − j(2− γ)| ≤ ε , (11)

then various denominators will become zero, and appropriate limits must be taken. That is,

the removable singularities occur at ω2 and ω3. Nothing particularly interesting either math-

ematically or physically happens at these apparent singularities; at best they are inflection

points for the behavior of the pressure near the origin.

The distance r2 from the center of symmetry to the shock position is given as a function

of time by

r2 =

(
Eblastt

2

αρ0

)1/(j+2−ω)

, (12)

where α is related to the energy integral discussed below and depends only on ω, j, and γ.

The speed of the shock follows as

us =
2

j + 2− ω

r2

t
. (13)

An infinitely strong shock is assumed, so that the pre-shock pressure is negligible, i.e.,

P0 → 0. With this assumption substituted into the standard shock jump relations (Whitham

1974), the immediate post-shock values of the material speed u2, density ρ2, pressure P2,

specific energy E2, and the non-relativistic sound speed c2 are determined as

u2 =
2us

γ + 1
(14)

ρ2 =
γ + 1

γ − 1
ρ0 (15)

P2 =
2ρ0u

2
s

γ + 1
(16)
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E2 =
P2

ρ2(γ − 1)
(17)

c2 =

√
γP2

ρ2

. (18)

Now form the six exponents

α0 =
2

j + 2− ω
(19)

α2 = − γ − 1

γ(ω2 − ω)
(20)

α1 =
(j + 2− ω)γ

2 + j(γ − 1)

[
2[j(2− γ)− ω]

γ(j + 2− ω)2
− α2

]
(21)

α3 =
j − ω

γ(ω2 − ω)
(22)

α4 =
(j + 2− ω)(j − ω)

ω3 − ω
α1 (23)

α5 =
ω(1 + γ)− 2j

ω3 − ω
(24)

and the frequently-used combinations

a =
(j + 2− ω)(γ + 1)

4
(25)

b =
γ + 1

γ − 1
(26)

c =
γ(j + 2− ω)

2
(27)

d =
(j + 2− ω)(γ + 1)

(j + 2− ω)(γ + 1)− 2[2 + j(γ − 1)]
(28)

e =
2 + j(γ − 1)

2
. (29)

With the above definitions, we turn to the calculation of the Sedov functions λ (scaled

position), f (scaled speed), g (scaled density), and h (scaled pressure). Given a value for

the similarity variable V , first compute the following four auxiliary functions and their first

derivatives with respect to the similarity variable V

x1 = aV
dx1

dV
= a (30)

x2 = b (cV − 1)
dx2

dV
= bc (31)
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x3 = d (1− eV )
dx3

dV
= −de (32)

x4 = b (1− (cV/γ))
dx4

dV
= −bc/γ . (33)

The first derivatives will be used later when computing the energy integral. If the solution

type is standard or vacuum type (i.e., equation 8 or equation 9 is true), then the four Sedov

functions and the first derivative of the scaled position with respect to the similarity variable

V are

r/r2 ≡ λ = x−a0
1 x−a2

2 x−a1
3 (34)

dλ

dV
= −λ

[
α0

x1

dx1

dV
+

α2

x2

dx2

dV
+

α1

x3

dx3

dV

]
(35)

v/v2 ≡ f = x1λ (36)

ρ/ρ2 ≡ g = xα0ω
1 xα3+α2ω

2 xα4+α1ω
3 xa5

4 (37)

p/p2 ≡ h = xα0ω
1 x

α4+α1(ω−2)
3 x1+α5

4 . (38)

If the second apparent singularity asserts itself (equation 10 is true), then by taking the limit

ω → ω2 of equations 34–38 one finds (Book 1991)

λ = x−a0
1 x

(γ−1)/2e
2 exp

[
(γ + 1)

2e

(1− x1)

(x1 − γ+1
2γ

)

]
(39)

dλ

dV
= −λ

[
α0

x1

dx1

dV
+

(γ − 1)

2ex2

dx2

dV
− (γ + 1)

2e

dx1

dV

[
1

(x1 − γ+1
2γ

)

] [
1 +

(1− x1)

(x1 − γ+1
2γ

)

]]
(40)

f = x1λ (41)

g = xα0ω
1 x

4−j−2γ/2e
2 xa5

4 exp

[
(γ + 1)

e

(1− x1)

(x1 − γ+1
2γ

)

]
(42)

h = xα0ω
1 x

−jγ/2e
3 x1+α5

4 . (43)

If the third removable singularity asserts itself (equation 11 is true), then by taking the limit

ω → ω3 of equations 34–38 one finds (Book 1991)

λ = x−a0
1 x−a2

2 x−a1
4 (44)

dλ

dV
= −λ

[
α0

x1

dx1

dV
+

α2

x2

dx2

dV
+

α1

x4

dx4

dV

]
(45)

f = x1λ

g = xα0ω
1 xα3+ωα2

2 x
1−2/e
4 exp

[
−jγ(γ + 1)

2e

1− x1

(γ + 1)/2− x1

]
(46)

h = xα0ω
1 x

(j(γ−1)−γ)/e
4 exp

[
−jγ(γ + 1)

2e

1− x1

(γ + 1)/2− x1

]
. (47)
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If the solution type is singular (i.e., equation 7 is true), then

λ = rwant/r2 (48)

dλ

dV
= 0 (49)

f = λ (50)

g = λj−2 (51)

h = λj . (52)

In this case, the (dimensional) speed is an exactly linear function of the (dimensional) position

by virtue of equation 50. Finally, if the solution is of the vacuum type (i.e., equation 9 is

true) and we are in the “hole” region (rwant < rvac), then

λ =
dλ

dV
= f = g = h = 0 . (53)

There are few instances in the literature of analyzing the Sedov functions f , g, and h as

functions of λ for a representative selection of the entire (j, γ, ω) parameter space (Chevalier

1976; Ryu & Vishniac 1987; Vishniac & Ryu 1987). Book (1991) filled this gap by plotting

the physical profiles for γ=1.1, 1.2, 1.3, 1.4, 1.5, and 5/3 (values appropriate to ordinary

gases) and 0 ≤ ω < 3 (the values for which the total mass in the region is finite) for j=3.

To keep the number of figures within reasonable bounds, Book (1991) does not carry out

a similarly complete survey for j=1 and j=2, but does include a few examples in order to

indicate how they differ. As part of the verification of the code listed in the Appendix B, we

replicate those plots.

Figure 1 shows the Sedov functions for planar geometry j= 1 and γ=1.1 and 5/3 with ω

between 0 and 1. The values of ω are chosen so that there are no drastic changes in behavior

from one case to the next, i.e., à la Book (1991), they are “roughly evenly separated in

phenomenology space.” As ω varies from 0 to 1 the following qualitative changes occur: the

density develops an inflection point (Fig. 1c) and then becomes non-zero at ω=j/γ (Fig. 1d).

For ω > j/γ the density diverges at the origin. As ω → 1 the singular case (Fig. 1h) occurs

and the pressure goes to zero at the origin. That is, the vacuum case cannot occur in planar

geometry. The same behavior takes place for γ=5/3 (Fig. 1i-l), but each stage occurs at a

smaller ω, so that the pattern is spread out over the whole range of ω.

Figure 2a–h displays analogous results for cylindrical geometry j=2 and γ=1.1 with

ω between 0 and 2. Now the vacuum type solutions occur for ω1 < ω ≤ ω2. Note the

velocity is finite at the vacuum boundary. As ω continues to increase, the pressure, which is

initially concave upward, becomes convex and then, in the limit ω → ω2, discontinuous at
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the vacuum boundary. Figures 2i–p show the same stages occur for γ=5/3, but spread out

over a broader range of ω.

In spherical geometry Figs. 3–5 exhibit three new features that occur in the vacuum

region. First, when the vacuum region develops, the density becomes convex upward. Sec-

ond, the density bulges increasingly upward with increasing ω, eventually developing a local

maximum. Third, as ω → 2j/(γ + 1) the density becomes discontinuous at the periphery

of the vacuum boundary and divergent (with a negative slope) for larger values of ω. These

same stages occur in the same order for all values of γ—only the values of ω marking the

locations of the transitions change.

Overall, the scaled material speed, f , changes the least and the scaled mass density,

g, changes the most as the parameters j, γ, and ω vary. In all cases f is nearly linear

with scaled distance λ when a vacuum region is not present; f is exactly linear in λ in the

singular case. There are ranges of ω where the scaled density g has a negative slope over

some range of λ (Book 1991; Chevalier 1976). Since the slope of the scaled pressure h is

always positive, the two have opposite signs. Hence these regions are formally unstable to

convection (Book 1991; Chevalier 1976). A rigorous calculation of the growth of even small

amplitude perturbations is complicated not only by the spacetime dependence of the basic

state, but by the difficulty of obtaining the correct boundary conditions at the shock front,

which is continually sweeping over new material (Lifshitz 1946; Bernstein & Book 1978,

1980; Ryu & Vishniac 1987; Vishniac & Ryu 1987). The problem is analogous to that of

calculating the stability of a detonation front or an ablating inertial confinement fusion pellet

(Oppenheim et al. 1972; Kidder 1974, 1976; Bernstein & Book 1980; Remington et al. 1999;

Hansen et al. 2005).

Figure 6a and 6b display the profiles for ω=ω1 in the cylindrical and spherical cases,

respectively. Two lines might appear to be missing: for the cylindrical case the density

profile equals unity and coincides with the upper axis box, while for the spherical case the

density and velocity profiles overlap everywhere. The quantity hgγ, which is related to the

entropy, is plotted in Fig.6c and 6d for γ= 1.1 and γ=5/3 and ten different values of ω.

These two entropy plots differ substantially from those in Book (1991).

3. Calculating the Energy Integral

To determine the solution corresponding to the given initial energy released Eblast at

the origin, we must relate the solution parameters to that quantity. The energy, which is

constant throughout the motion, is the sum of the kinetic and internal energies, which can
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be expressed in non-dimensional form (after some manipulation) as

α =
8C0

(γ2 − 1)(j + 2− ω)2

∫ 1

0

(gf2 + h) λj−1 dλ (54)

where C0 = 2 if j = 1, 2π if j = 2, or 4π if j = 3. It is judicious to convert this single

integral over scaled position into two integrals over the similarity variable V (Kamm 2000),

in part, to isolate singularities that may occur at the lower integration bounds:

J1 =

∫ V2

Vmin

γ + 1

γ − 1
λj+1 g V 2 dλ

dV
dV (55)

J2 =

∫ V2

Vmin

8

(γ + 1)(j + 2− ω)2
λj+1 h

dλ

dV
dV (56)

so that α =

{ 1
2
J1 + 1

γ−1
J2 if j = 1

(j − 1)π
(
J1 + 2

γ−1
J2

)
if j = 2, 3 .

(57)

The integrands can be readily evaluated from Sedov functions given in the previous sections.

If the solution is of the singular type, the equation (54) can be integrated analytically

to yield

J2 =
γ + 1

j[(γ − 1)j + 2]2
(58)

J1 =
2

(γ − 1)
J2 (59)

α = 2j−1πJ2 . (60)

For either the standard or vacuum cases, however, the integrals must be evaluated numer-

ically. In either case the upper integration limit is the post-shock location V2 of equation

(5). The lower integration limit in the standard case is the post-shock origin V0 while in the

vacuum case the lower limit is the vacuum boundary Vv:

V0 =
2

(j + 2− ω)γ
(61)

Vv =
2

(j + 2− ω)
. (62)

These lower limits of integration can, depending on (ω,j, γ), make the integrands singular

at the lower limit. Without specifically addressing the singularities, quadrature routines

complain bitterly about inaccurate answers or too many iterations. Simply pushing the

lower limit of integration away from the singularity can result in inaccurate answers and

does not address the inefficiency. A correct treatment notes the singularities are integrable
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power-law singularities and, hence, removable. Removing the apparent singularities makes

quadrature evaluations accurate, repeatable, and efficient. In the standard case, the J1

integrand may be singular from the term

(cV − 1)α3−α2(j+2−ω)−1 (63)

if the exponent is negative. Similarly, the J2 integrand may be singular from the term

(cV − 1)α3−α2(j+2−ω)−2 (64)

if the exponent is negative. In the vacuum case, both J1 and J2 integrands may be singular

from the term (
1− cV

γ

)α5

(65)

if the exponent is negative. To address an integrand with an integrable singularity at its

lower limit, one makes a change of variable (Press et al. 1996). If the integrand diverges as

(x− a)p, 0 ≤ p < 1, near x = a, then use the identity∫ b

a

f(x) dx =
1

1− p

∫ (b−a)1−p

0

t
p

1−p f
(
t

1
1−p + a

)
dt . (66)

If the integrand diverges as (a− x)p, 0 ≤ p < 1, near x = a, use the identity∫ b

a

f(x) dx =
1

p− 1

∫ (a−b)1−p

0

t
p

1−p f
(
a− t

1
1−p

)
dt . (67)

These changes of variables can be made transparent to the user by defining suitable modules

that change the variable automatically.

Figure 7 shows α for various values of γ as a function of ω for spherical geometry,

obtained by numerical quadrature of the integrals in equation (57). For precision verifica-

tion analysis of hydrodynamic codes, taking α to be “a constant of order unity” provides

insufficient accuracy.

4. Generating Physical Solutions

With the Sedov functions and energy integrals in hand, physical solutions can be con-

structed. To generate a solution at the dimensional location rwant, locate the similarity value

V ∗ that corresponds to rwant by seeking the value of zero of the function f(V ∗) given by

f(V ∗) = r2 λ− rwant . (68)
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With this derived value of V ∗, compute the Sedov functions discussed in §2. This root-find is

a key component of the solution method. Implementations of this root-find for the similarity

variable in IEEE compliant 64 bit arithmetic (16 significant figures) run out of precision near

the origin in the standard case or the transition region in the vacuum case. It is important

to implement the root-find, and indeed the entire Sedov solution, in IEEE compliant 128 bit

arithmetic (quad precision) to achieve accurate and robust solutions in these regions.

If a solution is desired ahead of the blast wave, rwant ≥ r2, then the physical solution is

just that of the ambient material into which the disturbance propagates:

ρ = ρ0 r−ω (69)

v = v0 (70)

E = E0 (71)

P = P0 (72)

c = c0 . (73)

If a solution between the origin and the shock front, 0 < rwant < r2, is desired, then

ρ = ρ2 g (74)

v = u2 f (75)

P = P2 h (76)

E =
P

ρ(γ − 1)
(77)

c =

√
P

ργ
. (78)

4.1. Constant Initial Density Test Cases

The constant initial density case is frequently used in hydrocode verification tests, as

the initial conditions are typically straightforward to prescribe in hydrocodes. This case

also admits verification by comparison of values of the similarity variables λ, f , g, and h

with the values tabulated for γ=1.4 in Sedov (1959). Those published values appear to be

tabulated using λ as the independent variable. Since the method we have outlined uses V

as the independent variable, we obtain solutions at Sedov’s tabulated values by a root-find

procedure described above. In Tables 1, 2 and 3 we provide the numerical values from the

tables in Sedov (1959) as well as the values calculated with the code provided with this

paper (denoted Exact). Most of these values match “exactly,” i.e., to the four-digit mantissa
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quoted by Sedov (1959); the majority of the remaining values match to three significant

figures; a few match to only two significant figures. The reason for the disagreements include

(i) the limited precision for λ provided in Sedov (1959), (ii) inexactness in the root-finding

routine used to match the published value of λ; (iii) differences in the tolerances used in the

numerical quadratures; and (iv) probable precision differences in the calculations.

The uniform density initial condition has been used for hydrocode comparison (Reile

& Gehren 1991; Buchler et al. 1997; Owen et al. 1998; Caramana et al. 1998; Shashkov &

Wendroff 1999; Fryxell et al. 2000), primarily in spherical geometry. Although these authors

set the undisturbed uniform density to unity, each uses a different initial energy source; i.e.,

in the literature for this problem, there does not appear to be a standard initial configuration,

à la the Sod shock tube problem Sod (1978) or the Woodward-Colella blast wave problem

Colella & Woodward (1984).

Therefore, we consider the following problems, based on those proposed by Klein &

Boldstad (1999). Set the undisturbed uniform initial density to ρ0=1 g/cm3 and ω=0 in a

γ=1.4 polytropic gas with initial energy E0=0.0673185, 0.311357, and 0.851072 erg in planar,

cylindrical, and spherical geometries, respectively. These values are chosen so that the shock

is at r = 0.5, 0.75, and 1.0 cm in the planar, cylindrical, and spherical cases, respectively,

at a final time of t = 1.0 s. The solution is computed at the centers of 120 equally sized

zones on the domain between the origin and 1.2 cm. Key characteristics of the solutions for

these problems are presented in Tables 4 and 5. Figure 8 plots the density, velocity, specific

internal energy, and pressure for these three verification problems. These figures show the

peak in the density and pressure immediately behind the shock, and the peak in specific

internal energy near the origin. In each case, the pressure asymptotes to a nonzero value

at the origin; since the density vanishes there, the specific internal energy grows without

bound.

4.2. Variable Density Test Cases

The power-law initial density case is less frequently used in hydrocode verification tests,

as it is less straightforward to set up the initial conditions in codes. Indeed, we have been

unable to locate any hydrocode results using a variable densty in the refereed literature. We

consider, therefore, two problems, the first of which is a singular case, and the second of

which is a vacuum problem, the spherically symmetric version of which has been proposed

by Klein & Boldstad (1999).

In the variable density case one must ensure that the hydrocode is initialized correctly.
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In a finite volume code, for example, one must assign the initial cell density as the volume

integral of the power-law density divided by the cell volume. In cylindrical and spherical

geometries, this value of the initial cell density will likely not equal the point value of the

power-law density at the cell center.

For the singular case, set γ=1.4, ρ0 = 1 g/cm3, and ω = 5/3 in the cylindrical case and

ω = 7/3 in the spherical case. Recall that there is no physically admissible singular solution

in planar geometry. Set the initial energy deposited to 2.45749 erg in the cylindrical case and

4.90875 erg in the spherical case. These values are chosen so that the shock is at r = 0.75 cm

in the cylindrical case and at r = 1.0 cm in the spherical case. As in the previous problems,

the solution is computed at the center of 120 equally sized zones on the domain between

the origin and 1.2 cm. Tables 6 and 7 present various key values as computed for these

cases. Figure 9 contains plots of the density, velocity, specific internal energy, and pressure

as functions of position for these two problems.

For the vacuum case, set γ=1.4, ρ0 = 1 g/cm3, and ω to 1.7 in the cylindrical case and

2.4 in the spherical case. Set the initial energy deposited to 2.67315 erg in the cylindrical

case and 5.45670 erg in the spherical case. The spherical case has been proposed by Klein

& Boldstad (1999) as a hydrocode verification problem. As in the previous problems, the

solution is computed at the center of 120 equally sized zones on the domain between the

origin and 1.2 cm. Tables 8 and 9 list various key computed values for these cases. Figure

10 contains plots of the density, velocity, specific internal energy, and pressure as functions

of position for these two problems.

5. Summary

We have described a procedure for producing robust numerical solutions of a Sedov

blast wave propagating through polytropic gas with a power-law initial density. In addition

to the “standard Sedov problem,” we have included the solution to the singular and vacuum

problems in both cylindrical and spherical geometries. We addressed all of the removable

singularities, investigated the effects of finite-precision arithmetic on the ability to generate

solutions, and offered an instantiation of these ideas in a succinct computer code.

We showed many examples of these solutions, both dimensionless and physical. We

suggested that these problems can be used in the verification of hydrodynamics codes. We

suspect that modern Godunov-type high-resolution methods perform adequately on the stan-

dard Sedov problem, but may perform inadequately on problems for which the pressure van-

ishes at or near the origin. Although the magnitude of the error in the vicinity of the origin
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diminishes under mesh refinement, we make the heuristic albeit plausible speculation that

the hydrocode solutions may not be not converging to the exact solution for these problems.

We speculate that a possible fundamental shortcoming of present hydrodynamic integration

methods for these highly singular flows may be uncovered by a thorough investigation of the

singular and vacuum Sedov verification problems that we have proposed.
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6. Appendix A: Code Verification of a Sedov Solution

Here we give an example of a code verification analysis using the Sedov problem. We

focus on one of the standard cases discussed in §4.1, namely ρ0=1 g/cm3, ω=0, γ=1.4,

Eblast=0.851072 erg in spherical geometry. The shock is at r=1.0 cm at the final time of

t = 1.0 s, and the solution is computed on the domain between the origin and 1.2 cm (Klein

& Boldstad 1999). We use the RAGE radiation-hydrodynamic code (Gittings et al. 2006)

to generate numerical solutions. RAGE is an adaptive mesh, parallel, Eulerian frame code

similiar to other modern hydrocodes such as FLASH (Fryxell et al. 2000) or ZEUS-MP

(Whalen & Norman 2006).

Initialization of a Sedov problem on a mesh will generate spirited debate whose antag-

onists are divided between depositing all the energy into a single central zone or depositing

the energy in a small fixed size region. While the one-cell case is perhaps a more authentic

way of initializing the problem, it is rarely seen in the refereed literature (Reile & Gehren

1991; Buchler et al. 1997; Fryxell et al. 2000), although see Swesty & Myra (2007).

Figure 11 shows the numerical solutions for the two cases along with the analytical

solution at the final time of 1.0 s. The numerical solutions were generated on a 480 cell

uniform mesh with a time-step controller of cstab=0.9. The parameter cstab sets the time-

step based on the local sound speed and the material velocity, ∆t = cstab · ∆x / (c +

max(|vx|+ |vy|+ |vz|)), and determines the time-step in the numerical solution of the Sedov

problem. The single cell initialization ran to completion in 90000 timesteps, while the

small fixed region (energy uniformly distributed within 0.02 cm) initialization took 10000

timesteps.

Figure 11 shows that for r > 0.3 the differences between the specific internal energy

for the two cases is small and generally agrees with the analytic solution. For r < 0.3 the

differences between the two cases become substantially worse as the origin is approached.

Neither case agrees with the analytic solution, although the single cell initialization is closer.

Similar comments hold for the density. In contrast, the pressure and material speed solutions

for the two cases generally agree with the analytic solution as r → 0.

Rates of spatial convergence may be determined be equating an error metric to a model

for the error (Kamm, Rider & Brock 2002). Here we consider the error metric to be the

absolute L1 norm

L1 =

∑
|f exact

i − f rage
i |Vi∑

Vi

(79)

where f is a field quantity of interest (e.g., the density), and Vi is the appropriate volume

element weighting. Other error metrics, such as the relative L1 norm or the absolute L2
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norm could be used. For cases where the time-step controller is held constant and the

spatial resolution varied, we could model the L1 error norm as a power-law function of the

grid spacing;

L1 = A (∆x)q , (80)

where ∆x is the cell spacing and q is the spatial convergence rate (Kamm, Rider & Brock

2002). In this case, the rate of convergence between two grids, one coarse and one fine, is

given explicitly by

q = log

[
L1,fine

L1,coarse

] /
log

[
∆xfine

∆xcoarse

]
. (81)

The error model above follows from a modified-equation analysis which is typically done in

terms of length scales (not volumes). Other error models, such oscillatory convergence or a

polynomial in both cell size and time step, may be more suitable for a given situation.

It should be noted that the spatial discretization errors, temporal discretization errors, or

coupled space-time errors may change with simulation time during a numerical computation

of the Sedov problem. Although the solution is self-similar, various physical effects are

exercised in different proportions during an evolution, so the dominant contributor to the

overall numerical error may not remain the same (Hemez 2005). For example, the effects

of time discretization on a hydrodynamic simulation may be more pronounced early in the

evolution. Likewise, inadequate spatial discretization at some instants of the simulation may

be replaced as the dominant source of solution error by truncation errors at other times.

These remarks imply that convergence rates in equation 80 may be functions of spacetime.

To keep the present study practical, we consider only the global code verification properties

at the ending time of a test problem’s evolution.

Figure 12 shows the absolute value of the relative errors in the density, pressure, specific

internal energy, and material speed for one-dimensional uniform grids with 120, 240, 480,

960, 1920, and 3840 cells at the final time of 1.0 s. The single cell initialization procedure

was used. The time-step controller was kept at cstab=0.9. The relative cpu cost on a single

processor of increasing the spatial resolution is given. Note that doubling the number of

cells increases the single processor cpu by factors of three to four. The singularity at the

origin means the temperature grows without bound, implying large errors in the specific

energy near the origin. With the exception of the specific internal energy, there is a steady

decline in the magnitude of the errors between the origin and the shock front as the spatial

resolution is increased. Figure 12 and Table 10 show that the density, pressure, and material

speed have roughly linear global spatial convergence rates (q ∼ 1), while the specific internal

energy has a near zero global spatial convergence rate (because of the large persistent errors

at the origin). For the fixed region initialization procedure we find the same convergence

rates to within two significant figures.
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7. Appendix B: Computation of a Sedov Solution

This appendix lists six key routines necessary to generate robust Sedov solutions. Com-

mon functionality such as quadrature or root-find routines are not listed.

1. test sedov solver - example of how to use the routines.

2. sed 1d - drives the generation of physical solutions.

3. sedov funcs - generates the Sedov functions.

4. efun01 - integrand of the first energy integral; to be called by a quadrature routine.

5. efun02 - integrand of the second energy integral; to be called by a quadrature routine.

6. sed v find - given the distances, find the similarity variable; to be called by a root-

finder.
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program test_sedov_solver

implicit none

c..exercises the sedov solver

c..declare

character*80 outfile,string

integer i,nstep,iargc,nmax

parameter (nmax = 1000)

real*16 time,zpos(nmax),

1 eblast,rho0,omega,vel0,ener0,pres0,cs0,gamma,

2 xgeom,

3 den(nmax),ener(nmax),pres(nmax),vel(nmax),

4 cs(nmax),

5 zlo,zhi,zstep,value

c..popular formats

01 format(1x,t4,a,t8,a,t22,a,t36,a,t50,a,t64,a,t78,a,t92,a)

02 format(1x,i4,1p8e12.4)

03 format(1x,i4,1p8e14.6)

c..explicitly set some parameters

c..standard cases

c..spherical constant density should reach r=1 at t=1

nstep = 120

eblast = 0.851072q0

xgeom = 3.0q0

omega = 0.0q0

outfile = ’spherical_standard_omega0p00.dat’

c..input parameters in cgs

time = 1.0q0

rho0 = 1.0q0

vel0 = 0.0q0

ener0 = 0.0q0

pres0 = 0.0q0

cs0 = 0.0q0

gamma = 1.4q0
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c..number of grid points, spatial domain, spatial step size

c..to match hydrocode output, use the mid-cell points

zlo = 0.0q0

zhi = 1.2q0

zstep = (zhi - zlo)/float(nstep)

do i=1,nstep

zpos(i) = zlo + 0.5q0*zstep + float(i-1)*zstep

enddo

c..get the solution for all spatial points at once

call sed_1d(time,nstep,zpos,

1 eblast,omega,xgeom,

2 rho0,vel0,ener0,pres0,cs0,gamma,

3 den,ener,pres,vel,cs)

c..output file

open(unit=2,file=outfile,status=’unknown’)

write(2,02) nstep,time

write(2,01) ’i’,’x’,’den’,’ener’,’pres’,’vel’,’cs’

do i=1,nstep

write(2,03) i,zpos(i),den(i),ener(i),pres(i),vel(i),cs(i)

enddo

close(unit=2)

c..close up shop

end
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subroutine sed_1d(time,nstep,xpos,

1 eblast,omega_in,xgeom_in,

2 rho0,vel0,ener0,pres0,cs0,gam0,

3 den,ener,pres,vel,cs)

implicit none

c..this routine produces 1d solutions for a sedov blast wave propagating

c..through a density gradient rho = rho**(-omega)

c..in planar, cylindrical or spherical geometry

c..for the standard, singular and vaccum cases.

c..standard case: a nonzero solution extends from the shock to the origin,

c.. where the pressure is finite.

c..singular case: a nonzero solution extends from the shock to the origin,

c.. where the pressure vanishes.

c..vacuum case : a nonzero solution extends from the shock to a boundary point,

c.. where the density vanishes making the pressure meaningless.

c..input:

c..time = temporal point where solution is desired seconds

c..xpos(i) = spatial points where solution is desired cm

c..eblast = energy of blast erg

c..rho0 = ambient density g/cm**3 rho = rho0 * r**(-omega_in)

c..omegain = density power law exponent rho = rho0 * r**(-omega_in)

c..vel0 = ambient material speed cm/s

c..pres0 = ambient pressure erg/cm**3

c..cs0 = ambient sound speed cm/s

c..gam0 = gamma law equation of state

c..xgeom_in = geometry factor, 3=spherical, 2=cylindircal, 1=planar

c..for efficiency reasons (doing the energy integrals only once),

c..this routine returns the solution for an array of spatial points

c..at the desired time point.

c..output:

c..den(i) = density g/cm**3
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c..ener(i) = specific internal energy erg/g

c..pres(i) = presssure erg/cm**3

c..vel(i) = velocity cm/s

c..cs(i) = sound speed cm/s

c..although the ordinary differential equations are analytic,

c..the sedov expressions appear to become singular for various

c..combinations of parameters and at the lower limits of the integration

c..range. all these singularies are removable and done so by this routine.

c..these routines are written in real*16 precision because the

c..real*8 implementations simply run out of precision "near" the origin

c..in the standard case or the transition region in the vacuum case.

c..declare the pass

integer nstep

real*16 time,xpos(*),

1 eblast,rho0,omega_in,vel0,ener0,pres0,cs0,

1 gam0,xgeom_in,den(*),ener(*),pres(*),

3 vel(*),cs(*)

c..local variables

external midpnt,midpowl,midpowl2,sed_v_find,sed_r_find,

1 efun01,efun02

integer i

real*16 efun01,efun02,eval1,eval2

real*16 v0,v2,vstar,vmin,midpnt,midpowl,midpowl2,

1 alpha,vstep,us,u2,rho2,p2,e2,cs2,

2 zeroin,sed_v_find,sed_r_find,

3 vat,l_fun,dlamdv,f_fun,g_fun,h_fun,

4 denom2,denom3,rho1

c..eps controls the integration accuracy, don’t get too greedy or the number

c..of function evaluations required kills.

c..eps2 controls the root find accuracy

c..osmall controls the size of transition regions

real*16 iprint,eps,eps2,osmall,pi
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parameter (iprint = 1,

1 eps = 1.0q-10,

2 eps2 = 1.0q-30,

3 osmall = 1.0q-4,

4 pi = 3.1415926535897932384626433832795029q0)

c..common block communication

logical lsingular,lstandard,lvacuum,lomega2,lomega3

real*16 gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv

common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv,

3 lsingular,lstandard,lvacuum,lomega2,lomega3

c..common block communication with the integration stepper

real*16 gam_int

common /cmidp/ gam_int

c..popular formats

87 format(1x,1p10e14.6)

88 format(1x,8(a7,1pe14.6,’ ’))

c..initialize the solution

do i=1,nstep

den(i) = 0.0q0

vel(i) = 0.0q0

pres(i) = 0.0q0

ener(i) = 0.0q0

cs(i) = 0.0q0

end do

c..return on unphysical cases

c..infinite mass

if (omega_in .ge. xgeom_in) return
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c..transfer the pass to common block and create some frequent combinations

gamma = gam0

gamm1 = gamma - 1.0q0

gamp1 = gamma + 1.0q0

gpogm = gamp1 / gamm1

xgeom = xgeom_in

omega = omega_in

xg2 = xgeom + 2.0q0 - omega

denom2 = 2.0q0*gamm1 + xgeom - gamma*omega

denom3 = xgeom * (2.0q0 - gamma) - omega

c..post shock location v2 and location of singular point vstar

c..kamm & timmes equations 5-6

v2 = 4.0q0 / (xg2 * gamp1)

vstar = 2.0q0 / (gamm1*xgeom + 2.0q0)

c..set two logicals that determines the type of solution

lstandard = .false.

lsingular = .false.

lvacuum = .false.

if (abs(v2 - vstar) .le. osmall) then

lsingular = .true.

if (iprint .eq. 1) write(6,*) ’singular’

else if (v2 .lt. vstar - osmall) then

lstandard = .true.

if (iprint .eq. 1) write(6,*) ’standard’

else if (v2 .gt. vstar + osmall) then

lvacuum = .true.

if (iprint .eq. 1) write(6,*) ’vacuum’

end if

c..two apparent singularies, book’s notation for omega2 and omega3

lomega2 = .false.

lomega3 = .false.

if (abs(denom2) .le. osmall) then

lomega2 = .true.
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denom2 = 1.0q-8

if (iprint .eq. 1) write(6,*) ’omega2 case’

else if (abs(denom3) .le. osmall) then

lomega3 = .true.

denom3 = 1.0q-8

if (iprint .eq. 1) write(6,*) ’omega3 case’

end if

c..various exponents, kamm & timmes equations 19-24

a0 = 2.0q0/xg2

a2 = -gamm1/denom2

a1 = xg2*gamma/(2.0q0 + xgeom*gamm1) *

1 (((2.0q0*(xgeom*(2.0q0-gamma) - omega))/(gamma*xg2*xg2))-a2)

a3 = (xgeom - omega) / denom2

a4 = xg2 * (xgeom - omega) * a1 /denom3

a5 = (omega*gamp1 - 2.0q0*xgeom)/denom3

c..frequent combinations, kamm & timmes equations 25-29

a_val = 0.25q0 * xg2 * gamp1

b_val = gpogm

c_val = 0.5q0 * xg2 * gamma

d_val = (xg2 * gamp1)/(xg2*gamp1 - 2.0q0*(2.0q0 + xgeom*gamm1))

e_val = 0.5q0 * (2.0q0 + xgeom * gamm1)

c..evaluate the energy integrals

c..the singular case can be done by hand; save some cpu cycles

c..kamm & timmes equations 58-60

if (lsingular) then

eval2 = gamp1/(xgeom*(gamm1*xgeom + 2.0q0)**2)

eval1 = 2.0q0/gamm1 * eval2

alpha = gpogm * 2**(xgeom)/(xgeom*(gamm1*xgeom + 2.0q0)**2)

if (int(xgeom) .ne. 1) alpha = pi * alpha

c..for the standard or vacuum cases
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c..v0 = post-shock origin v0 and vv = vacuum boundary vv

c..set the radius coresponding to vv to zero for now

c..kamm & timmes equations 61-62

else

v0 = 2.0q0 / (xg2 * gamma)

vv = 2.0q0 / xg2

rvv = 0.0d0

if (lstandard) vmin = v0

if (lvacuum) vmin = vv

c..the first energy integral

c..in the standard case the term (c_val*v - 1) might be singular at v=vmin

if (lstandard) then

gam_int = a3 - a2*xg2 - 1.0q0

if (gam_int .ge. 0) then

call qromo(efun01,vmin,v2,eps,eval1,midpnt)

else

gam_int = abs(gam_int)

call qromo(efun01,vmin,v2,eps,eval1,midpowl)

end if

c..in the vacuum case the term (1 - c_val/gamma*v) might be singular at v=vmin

else if (lvacuum) then

gam_int = a5

if (gam_int .ge. 0) then

call qromo(efun01,vmin,v2,eps,eval1,midpnt)

else

gam_int = abs(gam_int)

call qromo(efun01,vmin,v2,eps,eval1,midpowl2)

end if

end if

c..the second energy integral

c..in the standard case the term (c_val*v - 1) might be singular at v=vmin
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if (lstandard) then

gam_int = a3 - a2*xg2 - 2.0q0

if (gam_int .ge. 0) then

call qromo(efun02,vmin,v2,eps,eval2,midpnt)

else

gam_int = abs(gam_int)

call qromo(efun02,vmin,v2,eps,eval2,midpowl)

end if

c..in the vacuum case the term (1 - c_val/gamma*v) might be singular at v=vmin

else if (lvacuum) then

gam_int = a5

if (gam_int .ge. 0) then

call qromo(efun02,vmin,v2,eps,eval2,midpnt)

else

gam_int = abs(gam_int)

call qromo(efun02,vmin,v2,eps,eval2,midpowl2)

end if

end if

c..kamm & timmes equation 57 for alpha

if (int(xgeom) .eq. 1) then

alpha = 0.5q0*eval1 + eval2/gamm1

else

alpha = (xgeom - 1.0q0) * pi * (eval1 + 2.0q0 * eval2/gamm1)

end if

end if

c..write what we have for the energy integrals

if (iprint .eq. 1)

1 write(6,88) ’xgeom =’,xgeom,’eblast=’,eblast,

2 ’omega =’,omega,’alpha =’,alpha,

3 ’j1 =’,eval1,’j2 =’,eval2

c..immediate post-shock values
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c..kamm & timmes equations 12-18

c..r2 = shock position, u2 = shock speed, rho1 = pre-shock density,

c..u2 = post-shock material speed, rho2 = post-shock density,

c..p2 = post-shock pressure, e2 = post-shoock specific internal energy,

c..and cs2 = post-shock sound speed

r2 = (eblast/(alpha*rho0))**(1.0q0/xg2) * time**(2.0q0/xg2)

us = (2.0q0/xg2) * r2 / time

rho1 = rho0 * r2**(-omega)

u2 = 2.0q0 * us / gamp1

rho2 = gpogm * rho1

p2 = 2.0q0 * rho1 * us**2 / gamp1

e2 = p2/(gamm1*rho2)

cs2 = sqrt(gamma*p2/rho2)

c..find the radius corresponding to vv

if (lvacuum) then

vwant = vv

rvv = zeroin(0.0q0,r2,sed_r_find,eps2)

end if

if (lstandard .and. iprint .eq. 1)

1 write(6,88) ’r2 =’,r2,’rho2 =’,rho2,

2 ’u2 =’,u2,’e2 =’,e2,

3 ’p2 =’,p2,’cs2 =’,cs2

if (lvacuum .and. iprint .eq. 1)

1 write(6,88)

2 ’rv =’,rvv,

3 ’r2 =’,r2,’rho2 =’,rho2,

4 ’u2 =’,u2,’e2 =’,e2,

5 ’p2 =’,p2,’cs2 =’,cs2

c..now start the loop over spatial positions

do i=1,nstep
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rwant = xpos(i)

c..if we are upstream from the shock front

if (rwant .gt. r2) then

den(i) = rho0 * rwant**(-omega)

vel(i) = vel0

pres(i) = pres0

ener(i) = ener0

cs(i) = cs0

c..if we are between the origin and the shock front

c..find the correct similarity value for this radius in the standard or vacuum cases

else

if (lstandard) then

vat = zeroin(0.90q0*v0,v2,sed_v_find,eps2)

else if (lvacuum) then

vat = zeroin(v2,1.2q0*vv,sed_v_find,eps2)

end if

c..the physical solution

call sedov_funcs(vat,l_fun,dlamdv,f_fun,g_fun,h_fun)

den(i) = rho2 * g_fun

vel(i) = u2 * f_fun

pres(i) = p2 * h_fun

ener(i) = 0.0q0

cs(i) = 0.0q0

if (den(i) .ne. 0.0) then

ener(i) = pres(i) / (gamm1 * den(i))

cs(i) = sqrt(gamma * pres(i)/den(i))

end if

end if

c..end of loop over positions

enddo

return

end
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subroutine sedov_funcs(v,l_fun,dlamdv,f_fun,g_fun,h_fun)

implicit none

save

c..given the similarity variable v, returns functions

c..lambda, f, g, and h and the derivative of lambda with v dlamdv

c..although the ordinary differential equations are analytic,

c..the sedov expressions appear to become singular for various

c..combinations of parameters and at the lower limits of the integration

c..range. all these singularies are removable and done so by this routine.

c..declare the pass

real*16 v,l_fun,dlamdv,f_fun,g_fun,h_fun

c..common block communication

logical lsingular,lstandard,lvacuum,lomega2,lomega3

real*16 gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv

common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv,

3 lsingular,lstandard,lvacuum,lomega2,lomega3

c..local variables

real*16 x1,x2,x3,x4,dx1dv,dx2dv,dx3dv,dx4dv,

1 cbag,ebag,beta0,pp1,pp2,pp3,pp4,c2,c6,y,z,

2 dpp2dv,eps

parameter (eps = 1.0q-30)

c parameter (eps = 0.0q0)

c..frequent combinations and their derivative with v

c..kamm & timmes equation 30-33

x1 = a_val * v

dx1dv = a_val
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cbag = max(eps, c_val * v - 1.0q0)

x2 = b_val * cbag

dx2dv = b_val * c_val

ebag = 1.0q0 - e_val * v

x3 = d_val * ebag

dx3dv = -d_val * e_val

x4 = b_val * (1.0q0 - 0.5q0 * xg2 *v)

dx4dv = -b_val * 0.5q0 * xg2

c..transition region between standard and vacuum cases

c..kamm & timmes equations 48-52

if (lsingular) then

l_fun = rwant/r2

dlamdv = 0.0q0

f_fun = l_fun

g_fun = l_fun**(xgeom - 2.0q0)

h_fun = l_fun**xgeom

c..for the vacuum case in the hole

c..kamm & timmes equation 53

else if (lvacuum .and. rwant .lt. rvv) then

l_fun = 0.0q0

dlamdv = 0.0q0

f_fun = 0.0q0

g_fun = 0.0q0

h_fun = 0.0q0

c..omega = omega2 = (2*(gamma -1) + xgeom)/gamma case, denom2 = 0
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c..kamm & timmes equations 39-43

else if (lomega2) then

beta0 = 1.0q0/(2.0q0 * e_val)

pp1 = gamm1 * beta0

c6 = 0.5q0 * gamp1

c2 = c6/gamma

y = 1.0q0/(x1 - c2)

z = (1.0q0 - x1)*y

pp2 = gamp1 * beta0 * z

dpp2dv = -gamp1 * beta0 * dx1dv * y * (1.0q0 + z)

pp3 = (4.0q0 - xgeom - 2.0q0*gamma) * beta0

pp4 = -xgeom * gamma * beta0

l_fun = x1**(-a0) * x2**(pp1) * exp(pp2)

dlamdv = (-a0*dx1dv/x1 + pp1*dx2dv/x2 + dpp2dv) * l_fun

f_fun = x1 * l_fun

g_fun = x1**(a0*omega) * x2**pp3 * x4**a5 * exp(-2.0q0*pp2)

h_fun = x1**(a0*xgeom) * x2**pp4 * x4**(1.0q0 + a5)

c..omega = omega3 = xgeom*(2 - gamma) case, denom3 = 0

c..kamm & timmes equations 44-47

else if (lomega3) then

beta0 = 1.0q0/(2.0q0 * e_val)

pp1 = a3 + omega * a2

pp2 = 1.0q0 - 4.0q0 * beta0

c6 = 0.5q0 * gamp1

pp3 = -xgeom * gamma * gamp1 * beta0 * (1.0q0 - x1)/(c6 - x1)

pp4 = 2.0q0 * (xgeom * gamm1 - gamma) * beta0

l_fun = x1**(-a0) * x2**(-a2) * x4**(-a1)

dlamdv = -(a0*dx1dv/x1 + a2*dx2dv/x2 + a1*dx4dv/x4) * l_fun

f_fun = x1 * l_fun



– 32 –

g_fun = x1**(a0*omega) * x2**pp1 * x4**pp2 * exp(pp3)

h_fun = x1**(a0*xgeom) * x4**pp4 * exp(pp3)

c..for the standard or vacuum case not in the hole

c..kamm & timmes equations 34-38

else

l_fun = x1**(-a0) * x2**(-a2) * x3**(-a1)

dlamdv = -(a0*dx1dv/x1 + a2*dx2dv/x2 + a1*dx3dv/x3) * l_fun

f_fun = x1 * l_fun

g_fun = x1**(a0*omega)*x2**(a3+a2*omega)*x3**(a4+a1*omega)*x4**a5

h_fun = x1**(a0*xgeom)*x3**(a4+a1*(omega-2.0q0))*x4**(1.0q0 + a5)

end if

return

end
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real*16 function efun01(v)

implicit none

save

c..evaluates the first energy integrand, kamm & timmes equation 55.

c..the (c_val*v - 1) term might be singular at v=vmin in the standard case.

c..the (1 - c_val/gamma * v) term might be singular at v=vmin in the vacuum case.

c..due care should be taken for these removable singularities by the integrator.

c..declare the pass

real*16 v

c..common block communication

logical lsingular,lstandard,lvacuum,lomega2,lomega3

real*16 gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv

common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv,

3 lsingular,lstandard,lvacuum,lomega2,lomega3

c..local variables

real*16 l_fun,dlamdv,f_fun,g_fun,h_fun

c..go

call sedov_funcs(v,l_fun,dlamdv,f_fun,g_fun,h_fun)

efun01 = dlamdv * l_fun**(xgeom + 1.0q0) * gpogm * g_fun * v**2

return

end
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real*16 function efun02(v)

implicit none

save

c..evaluates the second energy integrand, kamm & timmes equation 56.

c..the (c_val*v - 1) term might be singular at v=vmin in the standard case.

c..the (1 - c_val/gamma * v) term might be singular at v=vmin in the vacuum case.

c..due care should be taken for these removable singularities by the integrator.

c..declare the pass

real*16 v

c..common block communication

logical lsingular,lstandard,lvacuum,lomega2,lomega3

real*16 gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv

common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv,

3 lsingular,lstandard,lvacuum,lomega2,lomega3

c..local variables

real*16 l_fun,dlamdv,f_fun,g_fun,h_fun,z

c..go

call sedov_funcs(v,l_fun,dlamdv,f_fun,g_fun,h_fun)

z = 8.0q0/( (xgeom + 2.0q0 - omega)**2 * gamp1)

efun02 = dlamdv * l_fun**(xgeom - 1.0q0 ) * h_fun * z

return

end
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real*16 function sed_v_find(v)

implicit none

save

c..given corresponding physical distances, find the similarity variable v

c..kamm & timmes equation 68

c..declare the pass

real*16 v

c..common block communication

logical lsingular,lstandard,lvacuum,lomega2,lomega3

real*16 gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv

common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a_val,b_val,c_val,d_val,e_val,

2 omega,vv,xlam_want,vwant,rvv,

3 lsingular,lstandard,lvacuum,lomega2,lomega3

c..local variables

real*16 l_fun,dlamdv,f_fun,g_fun,h_fun

call sedov_funcs(v,l_fun,dlamdv,f_fun,g_fun,h_fun)

sed_v_find = r2*l_fun - rwant

return

end
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Table 1. Sedov Functions for γ = 1.4, planar geometry casea

λ V Sedov f Exact f Sedov g Exact g Sedov h Exact h

0.9797 0.5500 0.9699 0.9699 0.8625 0.8620 0.9162 0.9159
0.9420 0.5400 0.9156 0.9157 0.6659 0.6662 0.7915 0.7917
0.9013 0.5300 0.8599 0.8598 0.5160 0.5159 0.6923 0.6922
0.8565 0.5200 0.8017 0.8017 0.3982 0.3981 0.6120 0.6119
0.8050 0.5100 0.7390 0.7390 0.3019 0.3020 0.5457 0.5458
0.7419 0.5000 0.6678 0.6677 0.2200 0.2201 0.4904 0.4905
0.7029 0.4950 0.6263 0.6263 0.1823 0.1823 0.4661 0.4661
0.6553 0.4900 0.5780 0.5780 0.1453 0.1453 0.4437 0.4437
0.5925 0.4850 0.5172 0.5173 0.1074 0.1075 0.4229 0.4230
0.5396 0.4820 0.4682 0.4682 0.0826 0.0826 0.4116 0.4112
0.4912 0.4800 0.4244 0.4244 0.0641 0.0641 0.4038 0.4037
0.4589 0.4790 0.3957 0.3957 0.0536 0.0535 0.4001 0.4001
0.4161 0.4780 0.3580 0.3580 0.0415 0.0415 0.3964 0.3964
0.3480 0.4770 0.2988 0.2988 0.0263 0.0263 0.3929 0.3929
0.2810 0.4765 0.2410 0.2410 0.0153 0.0153 0.3911 0.3911
0.2320 0.4763 0.1989 0.1989 0.0095 0.0095 0.3905 0.3905
0.1680 0.4762 0.1441 0.1440 0.0042 0.0042 0.3901 0.3901
0.1040 0.4762 0.0891 0.0891 0.0013 0.0013 0.3900 0.3900

aThe Sedov values are those published in Sedov (1959). The exact values are
those calculated with the present solution method. Values that differ are high-
lighted.
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Table 2. Sedov Functions for γ = 1.4, cylindrical geometry casea

λ V Sedov f Exact f Sedov g Exact g Sedov h Exact h

0.9998 0.4166 0.9996 0.9996 0.9973 0.9972 0.9985 0.9984
0.9802 0.4100 0.9645 0.9645 0.7653 0.7651 0.8659 0.8658
0.9644 0.4050 0.9374 0.9374 0.6285 0.6281 0.7832 0.7829
0.9476 0.4000 0.9097 0.9097 0.5164 0.5161 0.7124 0.7122
0.9295 0.3950 0.8812 0.8812 0.4234 0.4233 0.6514 0.6513
0.9096 0.3900 0.8514 0.8514 0.3451 0.3450 0.5983 0.5982
0.8725 0.3820 0.7998 0.7999 0.2427 0.2427 0.5266 0.5266
0.8442 0.3770 0.7638 0.7638 0.1892 0.1892 0.4884 0.4884
0.8094 0.3720 0.7226 0.7226 0.1414 0.1415 0.4545 0.4545
0.7629 0.3670 0.6720 0.6720 0.0975 0.0974 0.4242 0.4241
0.7242 0.3640 0.6327 0.6327 0.0718 0.0718 0.4074 0.4074
0.6894 0.3620 0.5989 0.5990 0.0545 0.0545 0.3969 0.3969
0.6390 0.3600 0.5521 0.5521 0.0362 0.0362 0.3867 0.3867
0.5745 0.3585 0.4943 0.4943 0.0208 0.0208 0.3794 0.3794
0.5180 0.3578 0.4448 0.4448 0.0123 0.0123 0.3760 0.3760
0.4748 0.3575 0.4073 0.4074 0.0079 0.0079 0.3746 0.3746
0.4222 0.3573 0.3621 0.3620 0.0044 0.0044 0.3737 0.3737
0.3654 0.3572 0.3133 0.3133 0.0021 0.0021 0.3733 0.3732
0.3000 0.3572 0.2571 0.2572 0.0008 0.0008 0.3730 0.3730
0.2500 0.3571 0.2143 0.2143 0.0003 0.0003 0.3729 0.3729
0.2000 0.3571 0.1714 0.1714 0.0001 0.0001 0.3729 0.3729
0.1500 0.3571 0.1286 0.1286 0.0000 0.0000 0.3729 0.3729
0.1000 0.3571 0.0857 0.0857 0.0000 0.0000 0.3729 0.3729

aThe Sedov values are those published in Sedov (1959). The exact values are
those calculated with the present solution method. Values that differ are high-
lighted.
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Table 3. Sedov Functions for γ = 1.4, spherical geometry casea

λ V Sedov f Exact f Sedov g Exact g Sedov h Exact h

0.9913 0.3300 0.9814 0.9814 0.8379 0.8388 0.9109 0.9116
0.9773 0.3250 0.9529 0.9529 0.6457 0.6454 0.7993 0.7992
0.9622 0.3200 0.9237 0.9238 0.4978 0.4984 0.7078 0.7082
0.9342 0.3120 0.8744 0.8745 0.3241 0.3248 0.5923 0.5929
0.9080 0.3060 0.8335 0.8335 0.2279 0.2275 0.5241 0.5238
0.8747 0.3000 0.7872 0.7872 0.1509 0.1508 0.4674 0.4674
0.8359 0.2950 0.7397 0.7398 0.0967 0.0968 0.4272 0.4273
0.7950 0.2915 0.6952 0.6952 0.0621 0.0620 0.4021 0.4021
0.7493 0.2890 0.6496 0.6497 0.0379 0.0379 0.3856 0.3857
0.6788 0.2870 0.5844 0.5844 0.0174 0.0174 0.3732 0.3732
0.5794 0.2860 0.4971 0.4971 0.0052 0.0052 0.3672 0.3672
0.4560 0.2857 0.3909 0.3909 0.0009 0.0009 0.3656 0.3656
0.3600 0.2857 0.3086 0.3086 0.0002 0.0001 0.3655 0.3655
0.2960 0.2857 0.2538 0.2537 0.0000 0.0000 0.3655 0.3655
0.2000 0.2857 0.1714 0.1714 0.0000 0.0000 0.3655 0.3655
0.1040 0.2857 0.0892 0.0891 0.0000 0.0000 0.3655 0.3655

aThe Sedov values are those published in Sedov (1959). The exact values are
those calculated with the present solution method. Values that differ are high-
lighted.
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Table 4. Values of key variables for the γ = 1.4 uniform density test cases at t=1 sa

Geometry Eblast α J1 J2

Planar 0.0673185 0.538548 0.197928 0.175834
Cylindrical 0.311357 0.984041 0.0654053 0.0495650
Spherical 0.851072 0.851060 0.0296269 0.0211647

aThe table contains the total energy Eblast, the nondimen-
sional energy α (Eq. 54), and the integrals J1 (Eq. 55) and J2

(Eq. 56).
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Table 5. Values of key results for the γ = 1.4 uniform density test cases at t=1 sa

Geometry r2 ρ2 u2 E2 P2

Planar 0.500000 6.00000 0.277778 0.0385802 0.0925926
Cylindrical 0.750000 6.00000 0.312500 0.0488281 0.117188
Spherical 1.000000 6.00000 0.333334 0.0555559 0.133334

aTable gives the shock position r2, and the post-shock density ρ2,
material velocity u2, specific internal energy E2, and pressure P2.
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Table 6. Values of key variables for the γ = 1.4 singular test cases at t=1 sa

Geometry Eblast ω α

Cylindrical 2.45749 1.66667 4.80856
Spherical 4.90875 2.33333 4.90875

.

aTable contains the total energy Eblast, the
intial density exponent ω, and the nondimen-
sional energy α (Eq. 54).
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Table 7. Values of key results for the γ = 1.4 singular test cases at t=1 sa

Geometry r2 ρ2 u2 E2 P2

Cylindrical 0.75 9.69131 0.535714 0.143495 0.556261
Spherical 1.00 6.00000 0.625000 0.195313 0.468750

aTable gives the shock position r2, and the post-shock density
ρ2, material velocity u2, specific internal energy E2, and pressure
P2.
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Table 8. Values of key variables for the γ = 1.4 vacuum test cases at t=1 sa

Geometry Eblast ω α J1 J2

Cylindrical 2.67315 1.70 5.18062 0.856238 0.158561
Spherical 5.45670 2.40 5.45670 0.454265 0.0828391

aThe table contains the total energy Eblast, the density expo-
nent ω, the nondimensional energy α (Eq. 54), and the integrals
J1 (Eq. 55) and J2 (Eq. 56).
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Table 9. Values of key results for the γ = 1.4 uniform vacuum cases at t=1 sa

Geometry rv r2 ρ2 u2 E2 P2

Cylindrical 0.154090 0.750000 9.78469 0.543478 0.147684 0.578018
Spherical 0.272644 1.00000 6.00000 0.641026 0.205457 0.493097

aTable gives the the vacuum boundary position rv, shock position r2, and the
post-shock density ρ2, material velocity u2, specific internal energy E2, and pres-
sure P2.
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Table 10. Global spatial convergence rates between pairs of gridsa

Density Pressure Speed
cells L1 q A L1 q A L1 q A

120 1.59E-01 3.57E-03 8.70E-03
240 1.04E-01 6.13E-01 2.68E+00 2.35E-03 5.99E-01 5.65E-02 5.58E-03 6.39E-01 1.65E-01
480 6.06E-02 7.80E-01 6.52E+00 1.37E-03 7.82E-01 1.48E-01 3.10E-03 8.47E-01 4.98E-01
960 3.29E-02 8.79E-01 1.18E+01 7.44E-04 8.81E-01 2.70E-01 1.63E-03 9.27E-01 8.02E-01
1920 1.72E-02 9.36E-01 1.71E+01 3.88E-04 9.37E-01 3.92E-01 8.59E-04 9.25E-01 7.95E-01
3840 8.83E-03 9.62E-01 2.09E+01 1.98E-04 9.71E-01 5.02E-01 4.44E-04 9.51E-01 9.63E-01

aSee equation 80.
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Fig. 1.— Plots of the Sedov functions f (red; scaled material velocity), g (blue, scaled mass

density), and h (green, scaled pressure) versus scaled distance λ for planar geometry with γ

and ω as labeled. After Figure 1 of Book (1991).
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Fig. 2.— Plots of the Sedov functions f (red; scaled material velocity), g (blue, scaled mass

density), and h (green, scaled pressure) versus scaled radius λ for cylindrical geometry with

γ and ω as labeled. After Figure 2 of Book (1991).



– 51 –

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=0.000

(m)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=2.000

(n)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=2.250

(o)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=2.400

(p)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=2.500

(q)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=2.550

(r)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=2.625

(s)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.200 ω=2.650

(t)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

1.2
γ=1.200 ω=2.700

(u)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

1.2
γ=1.200 ω=2.725

(v)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.200 ω=2.750

(w)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.200 ω=2.833

(x)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=0.000

(a)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=2.000

(b)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=2.500

(c)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=2.675

(d)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=2.727

(e)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=2.750

(f)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=2.800

(g)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.100 ω=2.825

(h)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

1.2
γ=1.100 ω=2.850

(i)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

1.2
γ=1.100 ω=2.857

(j)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.100 ω=2.875

(k)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.100 ω=2.909

(l)

Fig. 3.— Plots of the Sedov functions f (red; scaled material velocity), g (blue, scaled mass

density), and h (green, scaled pressure) versus scaled radius λ for spherical geometry with γ

and ω as labeled. After Figure 3 of Book (1991).



– 52 –

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=0.000

(m)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=1.000

(n)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=1.500

(o)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=1.900

(p)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=2.143

(q)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=2.200

(r)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=2.300

(s)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=2.350

(t)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.400 ω=2.400

(u)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

1.2
γ=1.400 ω=2.475

(v)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.400 ω=2.550

(w)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.400 ω=2.714

(x)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=0.000

(a)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=1.000

(b)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=2.000

(c)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=2.150

(d)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=2.308

(e)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=2.350

(f)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=2.400

(g)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=2.500

(h)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
γ=1.300 ω=2.550

(i)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

1.2
γ=1.300 ω=2.600

(j)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.300 ω=2.650

(k)

0 .2 .4 .6 .8 1
0

.5

1

1.5

2
γ=1.300 ω=2.769

(l)

Fig. 4.— Plots of the Sedov functions f (red; scaled material velocity), g (blue, scaled mass

density), and h (green, scaled pressure) versus scaled radius λ for spherical geometry with γ

and ω as labeled. After Figure 4 of Book (1991).
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Fig. 5.— Plots of the Sedov functions f (red; scaled material velocity), g (blue, scaled mass

density), and h (green, scaled pressure) versus scaled radius λ for spherical geometry with γ

and ω as labeled. After Figure 5 of Book (1991).
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Fig. 6.— Plots of the Sedov functions f (red; scaled material velocity), g (blue, scaled mass

density), and h (green, scaled pressure) versus scaled radius λ at ω = ω1 for (a) j=2, γ=5/3,

(b) j=3, γ=5/3. Plots of the entropy gh−γ (purple) with j = and (c) γ=1.1 and ω=2.5,

2.65. 2.69, 2.71, 2.72727, 2.75, 2.77, 2.79, 2.83 (top to bottom) and (d) γ=5/3 and ω=1.0,

1.6. 1.72, 1.76, 1.79, 1.8, 1.84, 1.88, 1.92, and 1.96 (top to bottom). After Figure 6 of Book

(1991).
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Fig. 8.— Sedov solutions for γ=1.4, standard cases, uniform density gas in for planar

(purple), cylindrical (green), and spherical (red) geometries. Clockwise from the upper left

are the density, material velocity, pressure, and specific internal energy, computed with 120

cells on the domain [0,1.2].
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Fig. 9.— Sedov solutions for γ=1.4, singular cases for cylindrical (green) and spherical (red)

geometries. Clockwise from the upper left are the density, material velocity, pressure, and

specific internal energy, computed with 120 cells on the domain [0,1.2].
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Fig. 10.— Sedov solutions for γ=1.4, vacuum cases for cylindrical (green) and spherical

(red) geometries. Clockwise from the upper left are the density, material velocity, pressure,

and specific internal energy, computed with 120 cells on the domain [0,1.2].
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Fig. 11.— Comparison of the solutions to the Sedov problem for the density (upper left),

pressure (upper right), specific internal energy (lower left), and material speed (lower right)

when the initial energy is deposited in an exact delta-function (red dashed curve), in a single

cell (purple), and in a small fixed size region (blue) at the final time of 1.0 s.
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Fig. 12.— Absolute value of the relative error in the density (upper left), pressure (upper

right), specific internal energy (lower left), and material speed (lower right) for a variety

of uniform grids at a fixed time-step control value. Cusps indicate a change of sign in the

relative error and the cpu cost of the solution on each grid is given.


