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Syllabus

1 Aug 29 Pre-calculus

2 Sept 05 Rates and areas

3 Sept 12 Trapezoids and limits

4 Sept 19 Limits and continuity

5 Sept 26 Between zero and infinity

6 Oct 03 Derivatives of polynomials

7 Oct 10 Chain rule

8 Oct 17 Product rule and integrals

9 Oct 24 Quotent rule and inverses

10 Oct 31 Parametrics and implicits

11 Nov 7 Indefinite integrals

12 Nov 14 Riemann sums

13 Dec 05 Fundamental Theorem of Calculus



• library.thinkquest.org/10030/calcucon.htm 

• ww.math.com/tables/derivatives/more/trig.htm 

• www.ping.be/~ping1339/gonio.htm 

• www-groups.dcs.standrews.ac.uk/~history/ 

HistTopics/Trigonometric_functions.html

Sites of the Week



Class #8

• Sine and cosine derivatives 

• Antiderivatives 

• Derivative of a product



Sinusoids

• We’ve found that the derivative of a sine is a cosine d(sin x)/dx = cos x,  
and the derivative of a cosine is a negative sine d(cos x)/dx = -sin x.

• Let’s show where these two derivatives come from.



• Consider a case when two functions (f and g)  
and their derivatives (f’ and g’) are continuous. 

• Suppose also that lim
x→c

 f(x) = 0  and  lim
x →c

 g(x) = 0

• One might think the quotient lim
x→c

 
f(x)

g(x)
⇒

0

0

would be troublesome.  But consider the following manipulation …

l’Hôpital’s rule



lim
x→c

 
f(x)

g(x)
= lim

x→c
 

f(x)− f(c)

g(x) − g(c)
      since f(a) = 0 and g(a) = 0

= lim
x→c

 

f(x)− f(c)

x − c
g(x)− g(c)

x − c

     algebra

=
$ f (a)

$ g (a)
                      by definition of f'(a) and g'(a)

=
lim
x→c

 $ f (x)

lim
x→c

 $ g (x)
                f'  and g'  are continuous

= lim
x→c

 
$ f (x)

$ g (x)
               limit of a quotient property

l’Hôpital’s rule



l’Hôpital’s rule

If f(x) and g(x) are differentiable over some interval 

and " g (x) is not zero in the interval 

and lim
x→c

 f(x) = 0 and lim
x→c

 g(x) = 0,

then lim
x→c

 
f(x)

g(x)
= lim

x→c
 
" f (x)

" g (x)

• What we’ve shown is called the zero-over-zero case of l’Hôpital’s rule:



Example

lim
x →1

 
x

5
-1

x
3
-1

• Find

In this case f(x) = x5 - 1 and g(x) = x3 - 1.  
All of the assumptions of l’Hôpital’s rule are satisfied.  
In particular, f(x) and g(x) go to zero as x approaches one.

lim
x→1

 
x

5
-1

x
3

-1
= lim

x→1
 
(x

5
-1)'

(x
3

-1)'

= lim
x→1

 
5x

4

3x
2
= lim

x→1
 
5

3
x

2
=

5

3



lim
x→0

 
1 −  cos x

x

• Find

In this case f(x) = 1 - cos x and g(x) = x.  
f(x) and g(x) are differentiable and go to zero as x approaches zero.

lim
x→0

 
1−cos x

x
= lim

x →0
 
(1− cos x)'

(x)'
= lim

x→0
 

sin x

1
= 0

Example



lim
x→0

 
sin x

x

• Find

In this case f(x) = sin x and g(x) = x.  
f(x) and g(x) are differentiable and go to zero as x approaches zero.

lim
x→0

 
sin x

x
= lim

x→0
 

(sin x)'

(x)'
= lim

x→0
 

cos x

1
=1

Example



Sinusoids

f'(x) = lim
h →0

 
sin(x + h) − sin(x)

h

• Let f(x) = sin x. By definition of the derivative,

• Algebra with fractions is usually easier if the numerator and denominator have one 
term each. The following identity can be used to transform the numerator from a sum 
to a product.

sin A − sin B = 2 cos 1

2 (A + B) sin 1

2 (A −B)

Here A = x + h and B = x. Applying this to the expression above gives:



" f (x) = lim
h→0

 
sin(x +  h) − sin(x)

h

" f (x) = lim
h→0

 
2cos 1

2
[(x + h) + x] sin 1

2
[(x + h) − x]

h

" f (x) = lim
h→0

 
2cos(x + h

2
) sin h

2

h

" f (x) = lim
h→0

 cos(x + h
2
) ⋅ lim

h→0
 
2 sin h

2

h

" f (x) = cos x ⋅ lim
h→0

 
2 sin h

2

h

" f (x) = cos x ⋅ lim
h→0

 
sin h

2

h
2

        limit is 1 by l'Hopital's rule

" f (x) = cos x ⋅ (1) = cos(x)



• Using the relations between the sine and cosine functions, cos (π/2 - x) = sin x  
and sin (π/2 - x) = cos x, makes finding the cosine derivative easy:

y’ = cos(π/2 - x) • (-1)  

   = -cos(π/2 - x) 

   = -sin(x)

y = cos(x) = sin(π/2 - x)

Sinusoids



Interlude



• Sine or cosine functions occur very frequently in the real world, particularly 
with periodic motion, image processing, and digital music.

Sinusoids

• The general equation of a sinusoid is f(t) = C + A cos B (t - D),  
where the function can be either a sine or a cosine.



• The period is the number 
of units taken to complete 
one cycle. 
B = 2π/period

• The phase D is the coordinate 
of the beginning of a cycle, 
where the argument of the 
sinusoid is zero.

Sinusoids



• The amplitude A is the 
distance between the 
sinusoid axis and a high 
point.

• The displacement C is the 
distance from the x-axis to 
the sinusoid axis.

Sinusoids



• Consider  
f(x) = 5 + 3 cos 2(x - 1)

• What is the displacement?  

The amplitude? 

Period?  

Phase?

Sinusoids



Example

• A mass is bouncing up and down on a spring hanging from the ceiling.  
Its distance y from the ceiling varies sinusoidally with time t, making a complete cycle every 
1.6 seconds. 

• At t = 0.4 sec, y reaches its greatest value of 8 ft.  
The smallest y gets is 2 ft.



Example

a) Write an equation for y in terms of t.

Thus,  y = 5 + 3 cos 1.25π (t - 0.4)  ft.

The axis is halfway between the upper and lower bounds, so C = 0.5 • (2 + 8) = 5. 

The amplitude is from the axis to the upper bound, so A = 8 - 5 = 3.

The period is given,  so B = 2π/1.6 = 1.25π.

A high point occurs at 0.4, so D = 0.4



b) Write an equation for the derivative y’.

y = 5 + 3 cos 1.25π (t - 0.4)  ft  

y’ = -3 sin 1.25π (t-0.4) • 1.25π  
   = -3.75π sin 1.25π (t - 0.4)   ft/s

Example



c) How fast is the mass moving at t = 1 s? t  =1.5 s? t = 2.7 s?  
At t = 2.7 s, is the mass moving up or down?

Plugging these t values into the 
equation for y’ gives:  
 

y’(t=1)     = -8.3 ft/sec 
 

y’(t=1.5)  = 10.9 ft/s 
 

y’(t=2.7) = -4.5 ft/s

Example

At t = 2.7 the mass is going up, but y’ is negative so  
the distance between the mass and ceiling is getting smaller.



d) What is the maximum speed of the mass?  
Where does the mass move this fast?

y = 5 + 3 cos 1.25π (t - 0.4)  ft 

y’ = -3 sin 1.25π (t - 0.4) • 1.25π = -3.75π sin 1.25π (t - 0.4)   ft/s

Example

The fastest the mass moves is 3.75π  ft/s, about 11.8 ft/s, which equals the 
amplitude of y’. At this point the mass is halfway between its high and low 
points.



Interlude



Antiderivatives

• If an object is falling freely under the action of gravity, it speeds up.  
You probably know that the speed near the surface of the earth is given by v(t) = 
dy/dt = -9.8•t  m/s. 

• From this equation is it possible to find 
an equation for the position y?



Antiderivatives

• We have to work backwards from the process of taking the derivative, 
“What could we differentiate to get -9.8•t for the answer?”

• It we differentiate y = t2, we get dy/dt = 2•t. 
The variable is correct, but its coefficient isn’t -9.8. 

• “What could we multiply 2 by to get -9.8?”  
The answer is -9.8/2, or -4.9.

• Thus, the function is y = -4.9 t2



Antiderivatives

• But, there are other functions we could differentiate to get -9.8t :

y = -4.9 t2 + 3.7                      y = -4.9 t2 - 1776            y = -4.9 t2 + π

• An antiderivative is also called an  
indefinite integral, which we’ll soon  
learn about. 

• The equation y = -4.9t2 + constant is called the general equation.  
Each particular constant that appears above is called a particular equation. 



Example

• If f’(x) = x7, find the general equation for the antiderivative.

• Thus, the general equation would be f(x) = 1/8 x8 + C.

• The exponent is 7, so the function differentiated must have had an exponent of 8.

• The derivative of x8 is 8x7, which is 8 times too big.  

So, the function differentiated must have been 1/8 x8.

• The function differentiated could also have had some constant added to it. The 
constant does not show up in the derivative because the derivative of a constant 
is zero.



• The particular equation of an antiderivative can be found if we know the values of the 
function at one point.

• The coordinates of this point are called the initial conditions  
(one usually knows the values at the starting point). 

• The initial conditions give us the 
information needed to find the 
particular value of the constant C.

Initial Conditions  

1990 Paul Tzanetopoulos 

Antiderivatives



Examples

• Galileo drops a cannonball from a leaning tower.  
Two seconds later the cannonball is at y = 35 m above the ground. 

• If the velocity is given by  
dy/dt = -9.8•t,  
how tall is the leaning tower? 

• When does the cannonball hit 
the ground?



Examples

dy/dt = -9.8•t     —>   y = -4.9 t2 + C

Substitute in the initial conditions (y = 35m at t = 2 s) to find the constant:

35 = -4.9 • 22 + C    —>     C = 54.6     —>     y = -4.9t2 + 54.6  meters

Galilei’s inclined plane



Examples

The cannonball was dropped at t = 0.  
At that time y = 54.6, so the tower is 54.6 m tall.

The cannonball hits the ground when y = 0.  

0 = -4.9 t2 + 54.6     —>     t = sqrt(54.6/4.9) = 3.34 sec

y = -4.9 t2 + 54.6   m



Interlude

The Hammer and the Feather  

1990 Alan Bean, inspired by  

Apollo 15 commander David R. Scott 



Products

• We know that the derivative of a sum is the sum of the derivatives.

• Surprisingly, it turns out that the derivative of a product is not the product of 
the derivatives.

If f = g•h, where g and h are differentiable functions, then f’ = g’h + gh’

Derivative of the first times the second plus  
the first times the derivative of the second. 



Example

• If y = x4 cos 6x, find dy/dx.

dy/dx = 4x3 cos 6x + x4(-sin 6x)•6  

          = 4x3 cos 6x - 6x4 sin 6x 

          = 2x3 (2 cos 6x - 3x sin 6x)

• As you write the product derivative, chant  
“derivative of first times second, plus first times derivative of second”.  
Don’t forget the chain rule!



Example

• If y = (3x - 8)7 (4x + 9)5, find y’.

y’ = 7 • (3x - 8)6 • 3 • (4x + 9)5  + (3x - 8)7 • 5 • (4x + 9)4 • 4 

   = (3x - 8)6 (4x + 9)4 [21 (4x + 9)  + 20 (3x - 8)]  

   = (3x - 8)6 (4x + 9)4 (144x + 29)



Products

• Let’s see why the 
product rule is true.

f = g ⋅ h

# f = lim
Δx→0

f(x + Δx) − f(x)

Δx

# f = lim
Δx→0

g(x + Δx)h(x + Δx) − g(x)h(x)

Δx

Now form g(x + Δx) = g +Δg  and h(x + Δx) = h +Δh

# f = lim
Δx→0

(g +Δg)(h +Δh) − gh

Δx

# f = lim
Δx→0

(gh +gΔh +Δgh +ΔgΔh) − gh

Δx

# f = lim
Δx→0

gΔh +Δgh +ΔgΔh

Δx

# f = lim
Δx→0

g
Δh

Δx
+ h

Δg

Δx
+ Δg

Δh

Δx

' 

( 
) 

* 

+ 
, 

# f = g
dh

dx
+ h

dg

dx
+ 0

dh

dx

# f = # g h + g # h 



Playtime

• During your in-class problem solving session today you’ll take the derivatives of some 
sinusoids and products, and you’ll find some indefinite integrals.


