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Syllabus

1 Aug 29 Pre-calculus

2 Sept 05 Rates and areas

3 Sept 12 Trapezoids and limits

4 Sept 19 Limits and continuity

5 Sept 26 Between zero and infinity

6 Oct 03 Derivatives of polynomials

7 Oct 10 Chain rule

8 Oct 17 Product rule and integrals

9 Oct 24 Quotent rule and inverses

10 Oct 31 Parametrics and implicits

11 Nov 7 Indefinite integrals

12 Nov 14 Riemann sums

13 Dec 05 Fundamental Theorem of Calculus



• archives.math.utk.edu/visual.calculus/0/parametric.6/ 

• web.mit.edu/wwmath/calculus/differentiation/implicit.html 

• astronomy.swin.edu.au/~pbourke/surfaces/

Sites of the Week



Class #10

• Continuity and differentiability  

• Parametric functions 

• Implicit functions



Continuity

• Let’s pause for a moment in our study of 
derivatives to polish off some unfinished 
business.

• If a function f has a value for f’(c),  
then f is said to be differentiable at x = c. 

• If f is differentiable at every x value in an 
interval, then f is said to be differentiable on that 
interval.



Continuity

• We saw that a function f is continuous at x =  c if the limit of f(x) as x approaches c 
equals f(c).

• A function can be continuous at x = c without being differentiable at x = c. 



Continuity

• But a function that is differentiable at x = c  
is automatically continuous at that point.

• Let’s prove that assertion.



Continuity

• To show that a function f is continuous at c means showing

• One form of the definition of the derivative already 
contains all the ingredients:

lim 
x→c

f(x) = f(c)

" f (c) = lim 
x →c

f(x) − f(c)

x - c



Continuity

• The game is to perform some operations that lead from  
the hypothesis (differentiability) to the conclusion (continuity).

• In this case, it’s easier (read slicker) to start 
somewhere “in the middle” and use the hypothesis 
along the way. Here goes!



Continuity

Start with something that 
contains limit, f(x) and f(c):lim 

x→c
[f(x) − f(c)]

= lim 
x→c

f(x) − f(c)

x −c
⋅ (x −c)
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) 
* Multiply by a slick form of 1

Limit of a product= lim 
x→c

f(x) − f(c)

x −c
⋅ lim 

x →c
(x −c)

= " f (c) ⋅ 0
Derivative exists and limit of 
a linear function

= 0



Continuity

So we have

lim 
x→c

[f(x) − f(c)] = 0

which is the definition of continuity.

lim 
x→c

f(x) − lim 
x→c

f(c) = 0

lim 
x→c

f(x) − f(c) = 0

lim 
x→c

f(x) = f(c)

• The art of this proof is to multiply by 1 in the form (x-c)/(x-c).  
The rest of the proof involves algebra, limit properties, and the definitions of  
derivative and limit. 



Continuity

• If function f is differentiable at x = c, then f is continuous at x = c.

• The contrapositive property is true: if not continuous then not differentiable.

• But the converse (if continuous then differentiable) and  
inverse (if not differentiable then not continuous) properties are false.



• Prove that f(x) = x2 - 7x + 13 is continuous at x = 4.

f’(x) = 2x - 7       
f’(4) = 1, which is a real number.  
Therefore f is differentiable at x = 4; thus f is continuous at x = 4.

Example



Example

• Is the function g(x) = (x-2)(x+3)/(x-2) differentiable at x = 2?

The function has a (removable) discontinuity at x =2,  
therefore g is not differentiable at x = 2.

Lightning in  

Santa Fe, NM



Interlude

Continuity 

Christine Corda 1998  

wax pencil on cardboard



Parametrics

• Consider a pendulum swinging in both 
the x- and y-directions.

• Its possible to calculate its velocity not 
just in the x- and  
y-directions, but along the curved path.

• We’ll use parametric functions to make 
such determinations.



Parametrics

• As the pendulum swings, it goes back and forth sinusoidally in 
both the x- and y-directions. 

• By using the methods we learned a few 
classes ago, you can find equations for 
these sinusoids.



Parametrics

• Let the equations of our pendulum be 
       x = 50 cos 1.2t  
       y = 30 sin 1.2t  
where x and y are in cm, t in seconds.

• The variable t is called a parameter, 
parameter meaning “parallel measure”.

• These two equations are called parametric 
equations.



Parametrics

• The rates of change in x and y with respect to t can be found by differentiating,

x        =   50 cos 1.2t  
dx/dt = -60 sin 1.2t

y        = 30 sin 1.2t  
dy/dt = 36 cos 1.2t

• At t = 1 the pendulum is moving -55.9 
cm/s in the x-direction, 13.0 cm/s in 
the y-direction.



Parametrics

• If we divide dy/dt by dx/dt, we get the slope of the ellipse dy/dx at t = 1.

dy/dx = 13.0/(-55.9)  
       = -0.233



Parametrics

• The property illustrated by our pendulum is called the parametric chain rule.

• If x and y are differentiable functions of t, the rate of change of y with x is

dy

dx
=
dy/dt

dx/dt

• If these were fractions, you could think of the dt terms cancelling each other.



Example

• Given: x = 3 cos 2π t     
           y = 5 sin π t

a) Find a range of t that generates at least one complete cycle of x and y. 
Plot the graph. 

The period for  
x is 2π/2π = 1.  
 

For y its 2π/π = 2.  
 

So,  0 < t < 2 lets  
x complete two cycles and 
y one cycle.



Example

b) Describe the behavior of the graph as t increases.

At t = 0 the graph 
starts at (3,0). 

As t increases a tracker goes 
upward to the left, retraces the 
path back to (3,0), goes 
downward to the left and finally 
retraces the path back to (3,0) 
at t = 2. 



Example

c) Find an equation for dy/dx in terms of t.

x = 3 cos 2π t                   y = 5 sin π t  
 

dx/dt = -6π sin 2π t         dy/dt = 5π cos π t  
 

            dy/dx = (5 cos π t)/(-6 sin 2π t)



Example

d) Find dy/dx when t = 0.15.  Show what this means on the graph.

At t = 0.15,   dy/dx = (5 cos π•0.15)/(-6 sin 2π•0.15) = -0.917

This is the slope of the tangent line at 
the (x,y) point (1.76, 2.27). 



Example

e) Show dy/dx is indeterminate when t = 0.5.  
Find the appropriate limit. How do the answers relate to the graph?

At t = 0.5,  dy/dx = (5 cos π • 0.5)/(-6 sin 2π • 0.5) = 0/0,  
which is indeterminate.



Example

Use l’Hopital’s rule (lim f/g = lim f’/g’) to find the limit at t = 0.5  
 

dy/dx = lim (-5π sin π t)/(-12π cos 2πt)  
 

           = (-5π sin π • 0.5)/(-12π cos 2π • 0.5)  
 

           = (-5π)/(-12π(-1))  
 

           = -5/12



Example

f) Make a conjecture about the type of geometrical figure. 
Then eliminate the parameter t and analyze the resulting equation.

The x-y curve looks like 
a parabola.

Eliminating the parameter t 
involves solving one equation for t 
in terms of x (or y) and 
substituting the result into the 
other equation.



Example

Sometimes there are artful shortcuts, as is the case here.

x = 3 cos 2π t        y = 5 sin π t

x = 3(1 - 2 sin2 π t)        Use the identity cos a = 1 - 2 sin2(a/2) 

x = 3(1 - 2 (y/5)2)         Use the y equation for the sine 

x = -6/25 y2 + 3            A parabola opening in the -x direction



Example

g) Compare the domain of the Cartesian and parametric equations.

The Cartesian equation has an unbounded domain of x < 3. 

The parametric equations stop at x = -3.

x = 3 cos 2πt    y = 5 sin πtx = -6/25 y2 + 3



Interlude

Most containers have an inside and an outside. A klein bottle is a closed surface with no interior and only one surface.  

It is unrealisable in 3 dimensions without intersecting surfaces. It can be realised in 4 dimensions. 



Implicit

• If y equals some function of x, such as y = x2, then there is said to be an explicit 

relationship between x and y.

• The word “explicit” comes from the same root as the word “explain”.



Implicit

• If x and y appear in an equation such as x2 + y2 = 25,  

then there is an implicit relation between x and y because it is 
only “implied” that y is a function of x.

• We used implicit differentiation to find 
the derivatives of the inverse 
trigonometric functions.



Implicit

• To find dy/dx for a relation whose equation is implicit:

1. Differentiate both sides of the equation with respect to x. 
Observe the chain rule by multiplying by dy/dx each time you 
differentiate an expression containing y.

2. Use algebra to isolate dy/dx on one side of the equation.



Example

• Consider x2 + y2 = 25

a) Tell why the graph is a circle.

The graph is a circle by the Pythagorean theorem, a2 + b2 = c2.  
All points on the graph are 5 units from the origin, implying the graph is a circle.



Example

b) Find dy/dx.

x2 + y2 = 25 

2x + 2yy’ = 0 

2yy’ = -2x 

y’ = -x/y

Note y’ is in terms of x and y, which is okay 
because the original relation had x and y together.



Example

c) Find two values of y when x = 3.

x2 + y2 = 25 

9 + y2 = 25 

y2 = 16 

y = 4 and -4 



Example

d) For the smaller value of y found in part c, find a line with slope dy/dx. How is this 
line related to the graph?

At the point (3,-4)  
the derivative is  
y’= -x/y = 3/4.

y - y
0 

= m(x - x
0
) 

y + 4 = 3/4 (x - 3) 

y = 3/4 x - 25/4

The equation of the tangent 
line through this point with 
this slope is



Example

• For y4 + x3 y5 - 2x7 = 13, find dy/dx.

4y3 y’ + 3x2 y5 + x3 • 5y4 y’ - 14x6 = 0 

y’ (4y3 + 5x3y4) = -3x2 y5 + 14x6   

y’ =  ( -3x2 y5 + 14x6 )  /  (4y3 + 5x3y4) 

• In practice it is usually much harder to find a point on an 
implicit graph than it is to do the calculus!



Playtime

• During your in-class problem solving session today you’ll examine a 
few parametric and implicit functions.

P1 atomic orbital  

Paul Bourke, 2001

| x exp(-0.5 sqrt(x2+ y2+ z2)) | = 0.1 


