

School of the Art Institute of Chicago

Frank Timmes

ftimmes@artic.edu

flash.uchicago.edu/~fxt/class_pages/class_calc.shtml

Syllabus

1	Aug 29	Pre-calculus	
2	Sept 05	Rates and areas	
3	Sept 12	Trapezoids and limits	
4	Sept 19	Limits and continuity	
5	Sept 26	Between zero and infinity	
6	Oct 03	Derivatives of polynomials	
7	Oct 10	Chain rule	
8	Oct 17	Product rule and integrals	
9	Oct 24	Quotent rule and inverses	
10	Oct 31	Parametrics and implicits	
11	Nov 7	Indefinite integrals	
12	Nov 14	Riemann sums	
13	Dec 05	Fundamental Theorem of Calculus	

Sites of the Week

• www.calc101.com

• torte.cs.berkeley.edu:8010/tilu

• archives.math.utk.edu/visual.calculus/3/differentials.2/

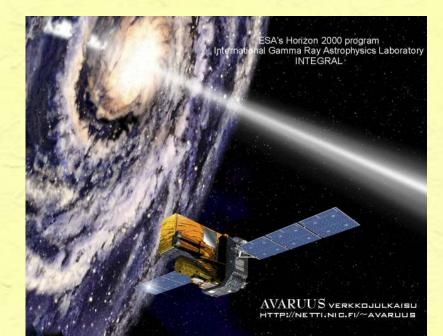
Class #11

Differentials

Indefinite Integrals

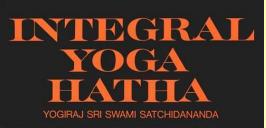
• Recall that a function f is said to be an antiderivative of another function g if and only if g(x) is the derivative of f(x).

 For instance, if g(x) = 5x⁴ and f(x) = x⁵, then f is an antiderivative of g because f'(x) and g(x) are equal.



• Note that $x^5 + 7$, $x^5 - 13.2$, and $x^5 + \pi$ are also antiderivatives of g(x) because the derivative of a constant is zero.

 In general, f(x) + C is an antiderivative of g(x), where C is an arbitrary constant called the "constant of integration".



• For this reason, an antiderivative is (usually) called an indefinite integral.

• The word "indefinite" is used because there is always a "+ C" whose value isn't determined until an initial condition is specified.

• If $f' = x^7$, find the indefinite integral for f(x).

 $f(x) = 1/8 x^8 + C$ because $f'(x) = x^7$.

• If $f'(x) = x^n$, find the indefinite integral for f(x).

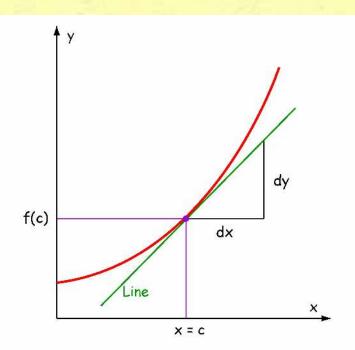
$$f(x) = \frac{1}{n+1}x^{n+1} + C$$
 because $f'(x) = x^n$

• We've found indefinite integrals by asking "What was differentiated to get this function", but we haven't seen yet a symbol for integration.

• To introduce a symbol for integration, we first need to consider differentials.

• Given an equation for a function f and a fixed point on its graph, we want to find an equation for the linear function (the line) that best fits the given function.

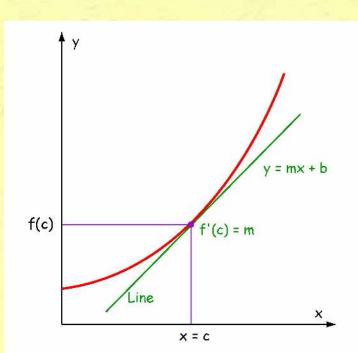
• We'll use this linear function to approximate f and values for the differentials dx and dy.



• For the line y = mx + b to fit a function close to x = c, two criteria should be met.

 The function values should be equal at x = c, that is, y(c) = c.

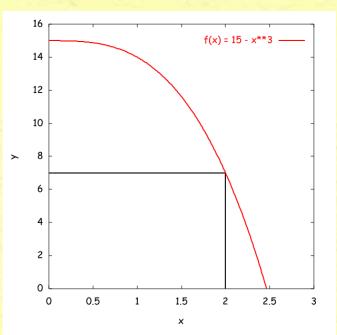
 The slopes should be equal at x = c, that is, y'(c) = f'(c).

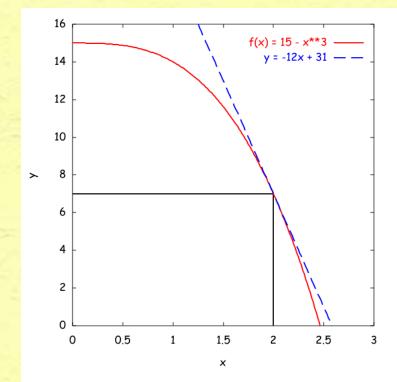


• For $f(x) = 15 - x^3$, find an equation for the line that best fits f at x = 2. Find the error in approximating f(x) with the line for values of x close to 2.

f(2) = 15 - 2³ = 7, so y = 7 when x = 2.

 $f'(x) = -3x^2$, f'(2) = -12, so the slope is m = -12 when x = 2





So, the equation of the line is

$$y - y_0 = m (x - x_0)$$

y - 7 = -12 (x - 2)
y = 7 - 12 (x - 2)
y = -12x + 31

 Tabulating the function f, the line y, and the error f(x) - y gives

×	f(x)	у	error
1.7	10.087	10.6	-0.513
1.8	9.168	9.4	-0.232
1.9	8.141	8.2	-0.059
2.0	7.000	7.0	0.000
2.1	5.739	5.8	-0.061
2.2	4.352	4.6	-0.248
2.3	2.833	3.4	-0.567

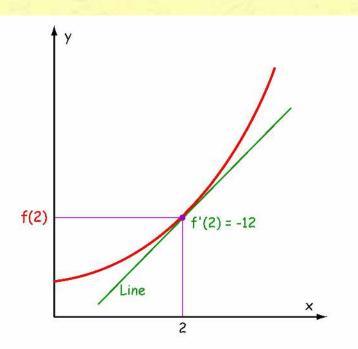
The linear function y fits f(x) perfectly at x = 2, and approximates f, when x is close to 2.

• The error gets larger in absolute value as x gets farther from 2.

• The pieces of the linear equation y = 7 - 12(x - 2) = -12x + 31 are significant:

7 is f(2), the value of the function at the fixed point.

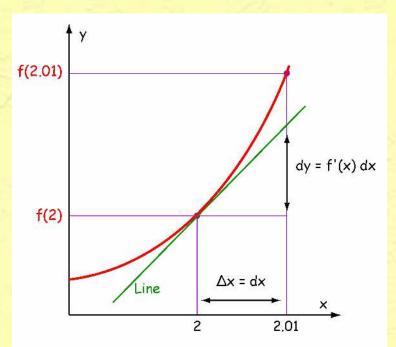
-12 is f'(2), the value of the derivative there.



• The pieces of the linear equation y = 7 - 12(x - 2) = -12x + 31 are significant:

(x-2) is the differential dx, the x-distance from the fixed point.

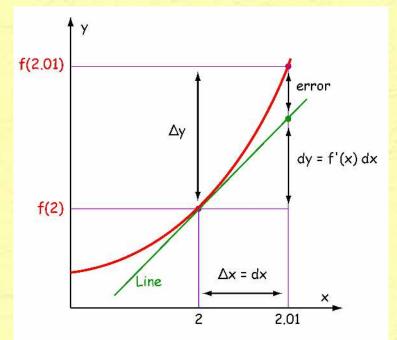
-12(x-2) is the differential dy, the y-displacement for the linear function.



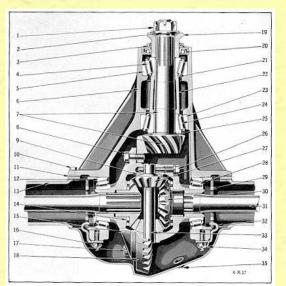
• Our specific example of the differentials dx and dy can be generalized. Thus:

The differentials dx and dy are defined as: $dx = \Delta x$ and dy = f'(x) dx

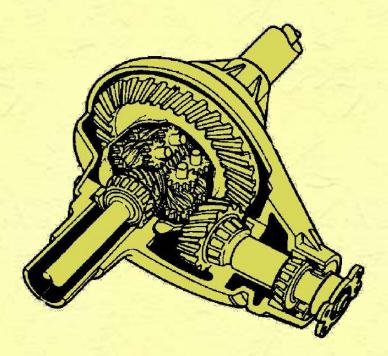
Thus, dy divided by dx is equal to f'(x).
Note dy is usually not equal to Δy.



• The most important aspect of the definition of differentials is that it allows for dy and dx in the symbol for the derivative dy/dx to be treated as separate quantities.



• Find the differential of $w = x^5$.



• Find the differential of z = tan 4y.

 $dz = sec^{2}(4y) \cdot 4 dy = 4 sec^{2}(4x) dy$

• Find the differential of $p = 3r^2 + sin r^2$.

 $dp = 3 \cdot 2r dr + \cos r^2 \cdot 2r dr = (6r + 2r \cos r^2) dr$

• Indefinite integration can be considered to be the operation performed on a differential to get the expression for the original function.

• The sign used for this operation is a stretched out S:

• As we'll see next time, the S shape comes from "sum".

• To indicate the we want the indefinite integral of x⁵, we write

 $\int x^5 dx$

 The whole expression, ∫x⁵ dx, is the integral. The function x⁵ inside the integral sign is called the integrand.

 $\sqrt{2}$

• These words are similar to, for example, the word radical for

with the radicand being the number 2 inside the square root sign.

 $\int x^5 dx$

 Although the dx must appear in the integral, "integrating over dx", only the function x⁵ is called the integrand.

The expression

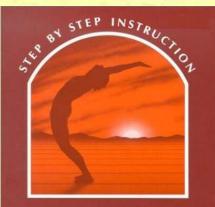
 $\int f(x) dx$

is pronounced "the integral of f(x) with respect to x". The symbol \int is an operator, like cos or the minus sign, that acts on f(x) dx.

Integral Journeys for Pilgrims, Poets, Fools and Saints™

• Hopefully we recognize the integral of a power function:

 $\int x^n \, dx = \frac{x^{n+1}}{n+1}$



FOR BEGINNERS INTEGRAL YOGA[®] HATHA

As taught by the INTEGRAL YOGA" INSTITUTE

Definition:

$g(x) = \int f(x) dx$ if and only if g(x) = f'(x)

+ Gamma-Ray Nucleosynthesis

• A consequence of the definition is integrals and derivatives are inverses:

$$\int \frac{\mathrm{d}}{\mathrm{d}x} f(x) \, \mathrm{d}x = f(x)$$

much like multiplying and then dividing by the same function.

 To develop a systematic way of integrating, it helps to know some properties of indefinite integrals.

All Systems Integration's OS X Seminars

• Integral of a constant times a function:

$$\int k f(x) dx = k \int f(x) dx$$

You can pull a constant out through the integral sign.

 $\int 5\cos(x) \, dx = 5 \int \cos(x) \, dx = 5\sin(x) + C$

• Integral of a sum of two functions:

$$\int \left[f(x) + g(x) \right] dx = \int f(x) \, dx + \int g(x) \, dx$$

Integral of a sum is the sum of the integrals.

$$\int (x^5 + \sec^2 x - x) \, dx = \int x^5 dx + \int \sec^2 x \, dx - \int x \, dx$$
$$= \frac{1}{6} x^6 + \tan x - \frac{1}{2} x^2 + C$$

• It doesn't matter which letter you use for the variable of integration:

 $\int \cos x \, dx = \sin x + C$

 $\int \cos r \, dr = \sin r + C$

 $\int \cos z \, dz = \sin z + C$

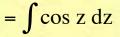
• The words "with respect to" identifies the variable in the integrand. This is of great utility when integrating composite functions. For example ...

Evaluate

$$\int 5\cos(5x+3)\,dx$$

• The idea is to substitute for something in the integrand so that it becomes something we know the integral of, like a cosine function.

Let z = 5x + 3, then dz = 5 dx $\int 5 \cos(5x + 3) dx = \int \cos(5x + 3) 5 dx$



- $= \sin z + C$
- $=\sin(5x+3)+C$

Evaluate

$$\int (7x+4)^9 dx$$

Again, substitute and try to drive the integral to something easy to integrate:

Let w = 7x + 4,

then
$$dw = 7 dx$$
, or $dx = dw/7$.

$$\int (7x+4)^9 \, \mathrm{d}x = \int \mathrm{w}^9 \, \frac{\mathrm{d}\mathrm{w}}{7}$$

$$=\frac{1}{7}\int w^9 dw$$

$$=\frac{1}{7}\cdot\frac{1}{10}w^{10}+C$$

$$=\frac{1}{70}(7x+4)^{10}+C$$

System Integration

Playtime

• During your in-class problem solving session today you'll explore some differentials and calculate a few indefinite integrals.

Integral