

Coal, oil and gas are called fossil fuels, because they are mostly made of the fossil remains of beings from long ago. The chemical energy within them is a kind of stored sunlight originally accumulated by ancient plants. Our civilization runs by burning the remains of humble creatures who inhabited the Earth hundreds of millions of years before the first humans came on the scene. Like some ghastly cannibal cult, we subsist on the dead bodies of our ancestors and distant relatives.

Carl Sagan

Arizona State University
SES 194

Energy in Everyday Life

Order of Magnitude Estimate

Frank Timmes

ftimmes@asu.edu

What is the energy in a hurricane?

Our guidelines for making an order-of-magnitude estimate:

- * **Guess**
- * ***Talk to your gut***
- * ***Divide and conquer***
- * ***Lie skillfully***
- * ***Punt***
- * ***Use guerrilla warfare***
- * ***Lower your standards***
- * ***Cross-check***

Guess

I know the annual US energy consumption is 10^{20} J,
so i'll guess one hurricane has about the same energy.

A hurricane is ultimately driven by capturing solar energy.

I know at the surface of the Earth the power delivered by the Sun is $\sim 1000 \text{ W/m}^2$.

"TRUST YOUR HUNCHES. THEY'RE USUALLY BASED ON FACTS FILED AWAY JUST BELOW THE CONSCIOUS LEVEL."

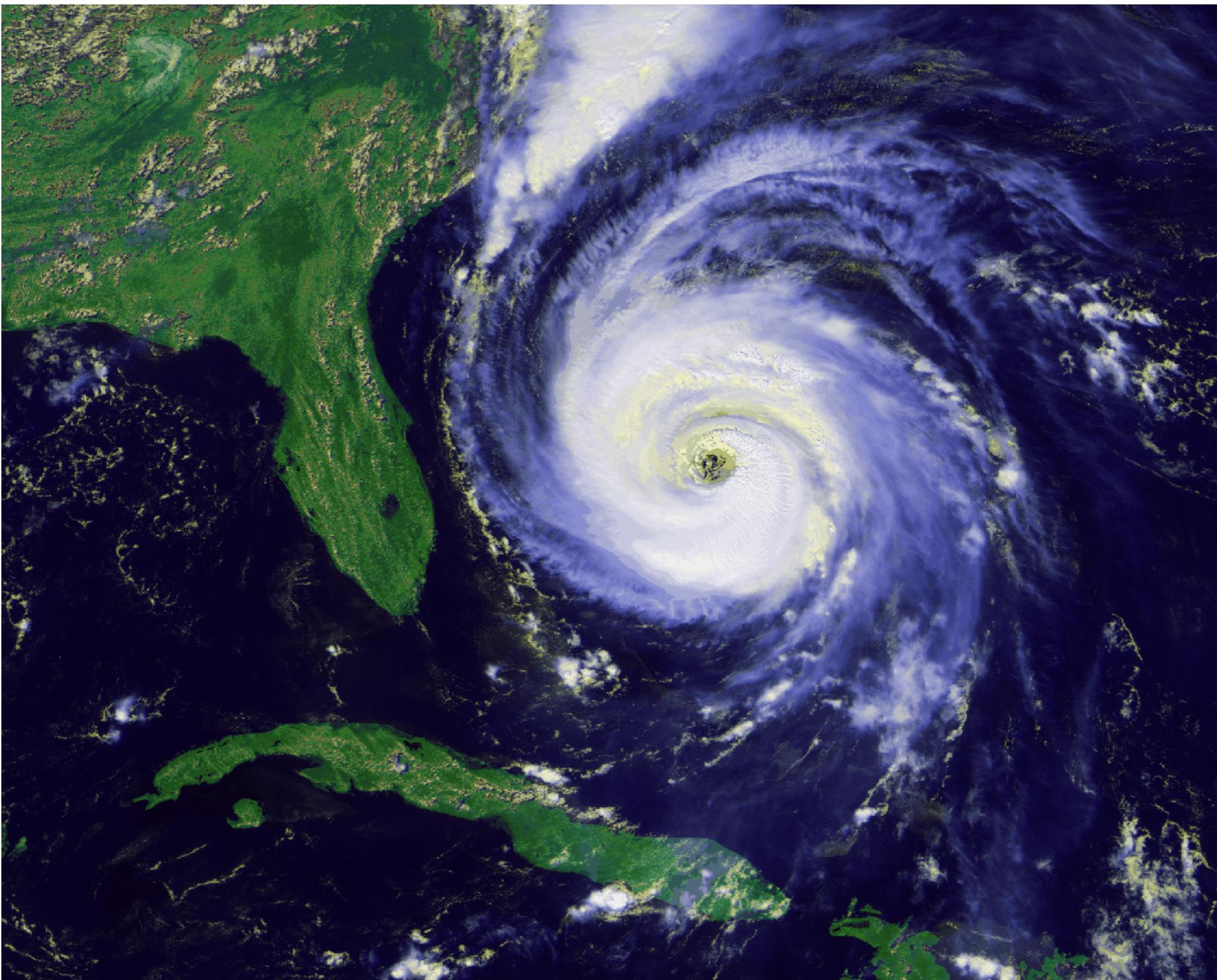
DR. JOYCE BROTHERS

A hurricane is a heat engine.

Evaporation of warm water from the ocean at $\sim 25^\circ\text{C}$ ($\sim 300\text{ K}$), condenses into clouds in the troposphere at $\sim -70^\circ\text{C}$ ($\sim 200\text{ K}$).

Common Knowledge
Share what you know.

**The efficiency of this heat engine is
 $\epsilon = (T_{\text{hot}} - T_{\text{cold}})/T_{\text{hot}} \sim (300 - 200)/300 \sim 1/3$.**


**Of the $\sim 1000\text{ W/m}^2$ delivered by the Sun,
 $\sim 1/3$ is available to the hurricane, $\sim 300\text{ W/m}^2$.**

A hurricane can cover a good sized state, so I'll assume a radius of ~ 200 miles, ~ 300 km.

**This corresponds to an area of
 $\pi \times (3 \times 10^5 \text{ m}^2) \sim 3 \times 3 \times 10^{10} \sim 10^{11} \text{ m}^2$.**

From news reports, I know a full strength hurricane lasts longer than 1 day but less than 10 days. I'll assume 3 days, or $3 \times 24 \times 60 \times 60 \sim 10^5 \text{ s}$.

**A hurricane thus has a total energy of
 $\sim (300 \text{ W/m}^2) \times (10^{11} \text{ m}^2) \times (10^5 \text{ s}) \sim 3 \times 10^{18} \text{ J}$**

A hurricane's energy consists of the energy of motion of its winds ($1/2 \times \text{mass} \times \text{speed}^2$) and the gravitational potential energy of the water stored in its clouds ($\text{mass} \times \text{gravitational acceleration} \times \text{height}$) which is released when the rain falls.

I need to estimate a speed, air mass, rain mass and height of a hurricane.

...orporate tax...
political enemies...
ial problem is to reduce
actions by having them
Divide and Conquer
people so that they will
attack against us

A hurricane's peak wind speeds are ~ 100 mph ~ 50 m/s.
Punt on the (larger) parts that have tropical winds.

To get the hurricane's air mass we can multiply the mass density of air (~ 1 kg/m³) times the volume of the hurricane.

Hurricane strength winds cover a large city,
so ~ 50 mile radius ~ 75 km radius. The area covered is
 $\pi \times \text{radius}^2$

$$\sim 3 \times (75 \times 10^3)^2$$

$$\sim 3 \times 75^2 \times 10^6$$

$$\sim 3 \times 5000 \times 10^6$$

$$\sim 2 \times 10^9 \text{ m}^2.$$

KEEP
CALM

AND

LOWER YOUR
STANDARDS

A hurricane's height is up in the troposphere, so more then 1 km and less than 10 km, so i'll guess 3 km.

**The volume of the hurricane winds is
Area x height $\sim (2 \times 10^9 \text{ m}^2) \times (3000 \text{ m}) \sim 10^{14} \text{ m}^3$.**

**So the mass of the hurricane's air is
mass density x volume
 $\sim (1 \text{ kg/m}^3) \times (10^{14} \text{ m}^3)$
 $\sim 10^{14} \text{ kg}$.**

Hurricane's energy of motion is then

1/2 x mass x speed²

~ 1/2 x (10¹⁴ kg) x (50 m/s)²

~ 1/2 x 10¹⁴ x 2500

~ 10¹⁷ J

Divide

AND

Conquer

For the hurricane's rain mass, we can multiply the mass density of water (~ 1000 kg/m³) times the volume covered by the rain.

I'll assume the rain falls in twice the radius, four times the area, as the winds, ~ 10¹⁰ m².

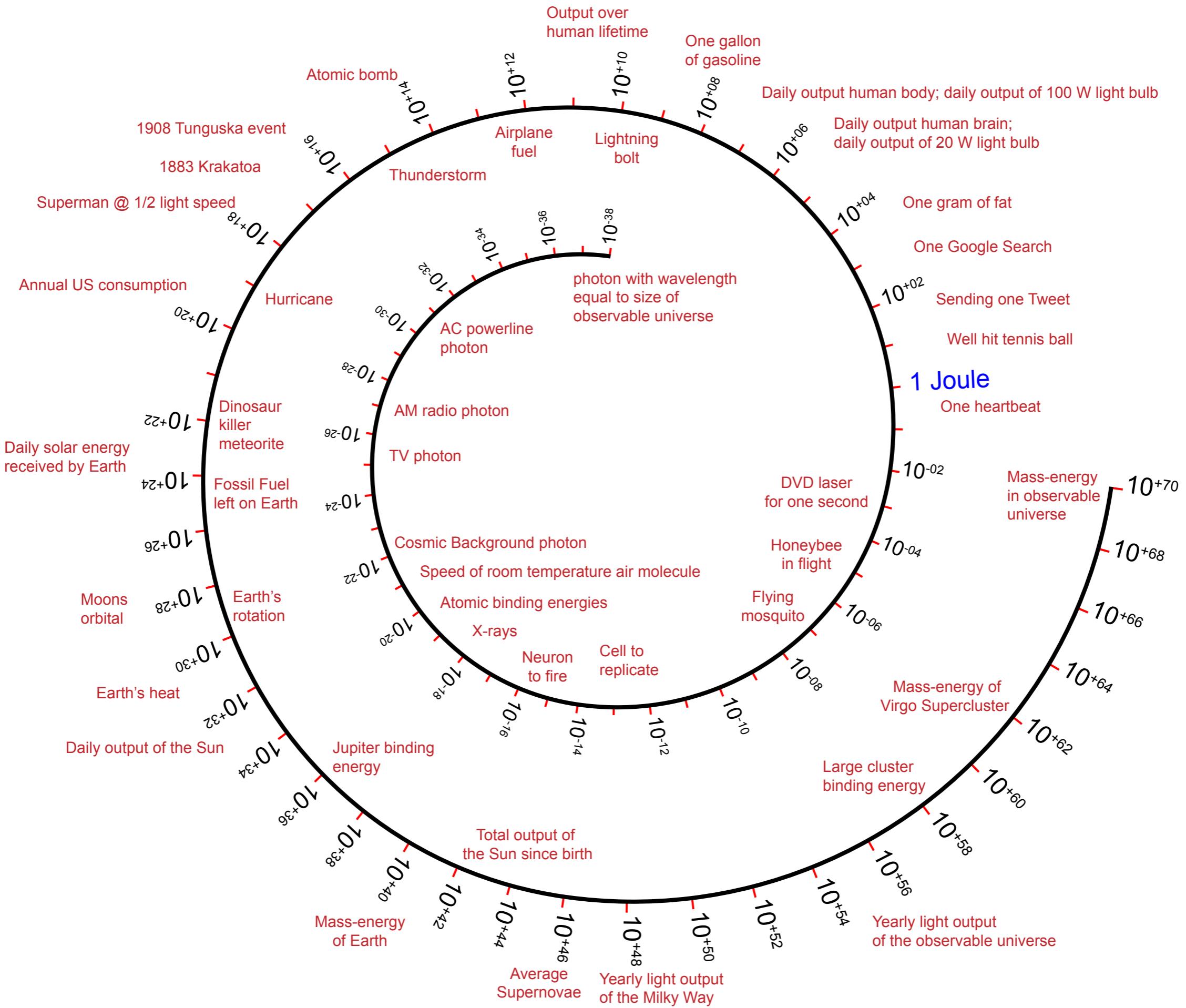
I recall the rains leave ~ 1 foot, $\sim 1/3$ meter, of water.

Common Knowledge

Share what you know.

So the volume of rain is
 $\sim 10^{10} \text{ m}^2 \times 1/3 \text{ m}$
 $\sim 3 \times 10^9 \text{ m}^3$.

Thus the mass of the hurricane's rain is
mass density \times volume
 $\sim (1000 \text{ kg/m}^3) \times (3 \times 10^9 \text{ m}^3)$
 $\sim 3 \times 10^{12} \text{ kg}$.


**Hurricane's gravitational potential energy release is then
mass x gravitational acceleration x height**
 $\sim (3 \times 10^{12} \text{ kg}) \times (10 \text{ m/s}^2) \times (3000 \text{ m})$
 $\sim 10^{17} \text{ J.}$

**The energy released by the falling rain is at least
as large as the wind energy.**

**Summing, the energy of motion and potential
energy release, a hurricane's energy $\sim 3 \times 10^{17} \text{ J.}$**

**This is within a factor of 10 of my simpler estimate.
Combining the two, the energy of a hurricane is $\sim 10^{18} \text{ J.}$**

Energy: 110 Orders of Magnitude

