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Syllabus

1 Sept 03 Basics and Celtic Knots

2 Sept 10 Golden Ratio

3 Sept 17 Fibonacci and Phyllotaxis

4 Sept 24 Regular and Semiregular tilings

5 Oct 01 Irregular tilings

6 Oct 08 Rosette and Frieze groups

7 Oct 15 Wallpaper groups

8 Oct 22 Platonic solids

9 Oct 29 Archimedian solids

10 Nov 05 Non-Euclidean geometries

11 Nov 12 Bubbles

12 Dec 03 Fractals



• www.mcs.surrey.ac.uk/Personal/R.Knott/ 

Fibonacci/fibnat.html 

• www.branta.connectfree.co.uk/fibonacci.htm

Sites of the Week



Class #3

• Fibonacci numbers 

• Rabbits, Bees, Sea Shells, Flowers,  
Seeds, Fruits, Vegetables 

• Relation to the Golden Ratio 

• In art



How many rabbits?

• The original problem that Fibonacci 
investigated (in the year 1202) was how fast 
rabbits could breed in ideal circumstances.

• Suppose a newly-born pair of rabbits, one male, 
one female, are put in a field.

• Rabbits are able to mate at the age of one month so 
that at the end of its second month a female can 
produce another pair of rabbits. 



• Suppose that our rabbits never die and that the female always produces one new pair (one 
male, one female) every month from the second month on. 

• The puzzle that Fibonacci posed: How many pairs will there be in one year?

How many rabbits?



• At the start of the 2nd month, the first pair mate.

• Start with a pair of baby rabbits.

How many rabbits?



• At the start of the 3rd month the female produces a new pair,  
so now there are 2 pairs of rabbits in the field.

How many rabbits?



• At the start of the 4th month, the original female produces a second pair, making 3 pairs 
in all in the field.

How many rabbits?



• At the start of the 5th month, the original female has produced yet another new pair, and 
the female born two months ago produces her first pair,  
making 5 pairs.

How many rabbits?



• The number of pairs of rabbits in the field at the start of each month is  
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 …

How many rabbits?



Fibonacci numbers

• The numbers are  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 …

• Can you see how the series is formed and how it continues?

• The Fibonacci series is formed by starting with 0 and 1 and then adding 
the latest two numbers to get the next one.

Fib(0) =  0

Fib(1) =  1

Fib(n) = Fib(n −1) + Fib(n −2) n > 2



Fibonacci numbers

• The rabbits problem isn’t very realistic.

• It implies that brother and sisters mate, which, genetically, 
leads to problems.

• Another problem which isn’t true to life, is that each birth is of 
exactly two rabbits, one male and one female.

Chicago artist Eduardo Kac wanted to use a 

rabbit named Alba in an exhibition. The French 

scientists who created her blocked the plan.  

Alba had been modified with the GFP jellyfish 

gene. 



Fibonacci numbers

• But Fibonacci did what mathematicians often do at first,  
simplify the problem and see what happens. 

• Let's start by looking at a real-life situation that is exactly modeled 
by Fibonacci's series; honeybees.

• The series bearing his name has lots of other  
interesting and practical applications, as we’ll see.



Honeybee geneology

• There are over 30,000 species of 
bees and in most of them the bees 
live solitary lives. 

• The one most of us know best is the 
honeybee and it, unusually, lives in a 
colony called a hive and they have an 
unusual family tree. 



• Some unusual facts about honeybees:

• Not all of them have two parents!

• In a colony of honeybees there is one special female called the queen.

Honeybee geneology



• Worker bees are female too but unlike the 
queen bee, they produce no eggs.

• Females are produced from fertilized eggs 
when the queen has mated with a male. So, 
females have two parents. 

Honeybee geneology



• The new queen starts a new colony 
when some of the bees swarm and 
leave their hive in search of a 
place to build a new nest.

Honeybee geneology

• Females usually end up as worker 
bees, but some are fed with a 
special substance called royal jelly 
which makes them grow into 
queens.



• Drone bees are male and 
do no work.

• Males are produced by the 
queen's unfertilized eggs, 
so male bees only have a mother 
but no father!

Honeybee geneology



• So, female bees have two parents, a male and a female  
whereas male bees have just one parent, a female.

Honeybee geneology



• Let's look at the family tree of a drone:

• He has 1 parent, a female.

• He has 2 grand-parents, since his 
mother had two parents.

• He has 3 great-grand-parents: his grand-
mother had two parents but his grand-
father had only one.

• How many great-great-grand parents does 
he have?

Honeybee geneology



• Again we see the Fibonacci numbers!

Parents
Grand 
parents

Great 
grand 
parents

2• Great 
grand 
parents

3•Great 
grand 
parents

Male 1 2 3 5 8

Female 2 3 5 8 13

Honeybee geneology



Fibonacci and the golden ratio

• If we divide each Fibonacci number, (1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ...)  
by the number before it, we will find the following series of numbers:

1/1 = 1  

2/1 = 2  

3/2 = 1.5  

5/3 = 1.66666  

8/5 = 1.6  

13/8 = 1.625  

21/13 = 1.61538  

34/21 = 1.61904  

55/34 = 1.61764

If we plot the ratios on a graph:



• The ratio settles down to the golden section,  Phi = 1.61804.

Fibonacci and the golden ratio



Fibonacci rectangles

• We can make another picture showing the Fibonacci numbers 1,1,2,3,5,8,13,21,.. if we start 
with two small squares of size 1 next to each other.



• On top of both of these draw a square of size 2 (= 1 + 1). 

Fibonacci rectangles



• We now draw a new square having sides 2 + 1 = 3 units long.

Fibonacci rectangles



• Then another with sides 2 + 3 = 5 units long.

Fibonacci rectangles



• We continue adding squares around the picture, each new square having a side which is as 
long as the sum of the latest two square's sides.

Fibonacci rectangles



• This set of rectangles whose sides are two successive Fibonacci numbers in length and are 
composed of squares with sides which are Fibonacci numbers, are called Fibonacci 
Rectangles.

Fibonacci rectangles



• By putting quarter circles in each square, we draw the Fibonacci Spiral.

Fibonacci spirals



• Similar curves occur in nature as the shape of a snail shell or some sea shells.

Fibonacci spirals



• Whereas the Fibonacci spiral increases in size by a factor of Phi in a quarter of a turn, the 
Nautilus spiral takes a whole turn before points move a factor of 1.618 from the center.

Fibonacci spirals



• On many plants, the number of petals is a Fibonacci number.

Phyllotaxis

• One petal …

white calla 
lily



• … and two petals are not that common.

euphorbia

Phyllotaxis



• Three petals are more common (lily, iris).

trillium

Phyllotaxis



• There are hundreds of species, both wild and cultivated, with five petals 
(buttercup, wild rose, larkspur).

columbine

Phyllotaxis



• Eight-petalled flowers are not so common as five,  
but there are quite a number of well-known species with eight (delphiniums).

bloodroot

Phyllotaxis



• Thirteen  (ragwort, corn marigold, cineraria)…

Black-eyed 
susan

Phyllotaxis



• … twenty-one (astor, chicory) and thirty-four petals (plantain, pyrethrum) are also quite 

common. Daisies illustrate the Fibonacci sequence extremely well. 

Shasta daisy

Phyllotaxis



• Ordinary field daisies have 34 petals, something to consider when playing "loves me, loves 
me not”. Some daisies may have 33 petals, some 35, but the average is 34 petals.

field daisies

Phyllotaxis



• Daisies with 55 or 89 petals are also common (michaelmas, asteraceae family). 

michaelmas

Phyllotaxis



• Fibonacci numbers can also be seen in the arrangement of seeds on flower heads.

Seed heads

• The daisy seedhead below is about 2 cm across and native to the Illinois prairie.

• The orange "petals" seem to form spirals curving both left and right. 



• Near the edges you can count 55 
spirals going right.

Seed heads

• A little further towards the 
center and you can count 34 
spirals going left.

• This pair of numbers are 
Fibonacci neighbors.



• The number of spirals we see, in either direction,  
is larger for larger seed heads than for small. 

Seed heads

• “Curvier" spirals appear near the center, flatter spirals appearing 
the farther away from the center we go.



• Let’s also look at pinecones.

Cone head



• The seed-bearing scales of a pinecone are really modified leaves, crowded together and in 
contact with a short stem. 

Cone head

• We can detect two prominent arrangements of ascending spirals growing outward from the 
point where it is attached to the branch.

• Eight spirals can be 
seen going up in a 
clockwise direction …

• … while thirteen 
spirals ascend more 
steeply in an 
anticlockwise 
direction.



• Pineapple scales are also patterned into spirals and because the scales are roughly 
hexagonal in shape, three distinct sets of spirals may be observed.

Pineapples

One set of 5 spirals 
ascends at a shallow angle 
to the right, 

a second set of 8 spirals 
ascends more steeply to 
the left, 

and a third set of 13 
spirals ascends very 
steeply to the right.



• Note how a cauliflower is roughly a pentagon in outline.  

• Looking carefully, you can see a center point, where the florets are smallest. Note the 
florets are organized in spirals around this center in both directions.

Cauliflowers



• Many plants show the Fibonacci numbers in 
the arrangements of the leaves around 
their stems. 

Leaf arrangement

• Counting the number of times we go around 
the stem in one direction until we 
encounter a leaf directly above the 
starting one gives one Fibonacci number.



Leaf arrangement

• Count in the other direction, and we get a 
different Fibonacci number of turns for 
the same number of leaves.

• The number of turns in each direction and 
the number of leaves are three consecutive 
Fibonacci numbers!



• For the top plant, we make 3 clockwise rotations 
before meeting a leaf directly above the first, 
passing 5 leaves on the way. 

Leaf arrangement

• If we go counter-clockwise,  
we need only 2 turns. 

• 2, 3 and 5 are consecutive  
Fibonacci numbers.



Leaf arrangement

• For the lower plant, we have 5 clockwise 
rotations passing 8 leaves, and only 3 rotations 
in the anti-clockwise direction. 

• This time 3, 5 and 8 are the consecutive 
numbers in the Fibonacci sequence. 



• About 90% of all plants exhibit leaf patterns involving the Fibonacci numbers.

Leaf arrangement

• Some common trees with their Fibonacci leaf arrangement numbers are:

where t/n means there is t turns for n leaves;  
each leaf makes t/n of a turn after the last leaf.

1/2 elm, linden, lime, grasses 

1/3 beech, hazel, grasses, blackberry 

2/5 oak, cherry, apple, holly, plum, common groundsel 

3/8 poplar, rose, pear, willow 

5/13 pussy willow, almond



• The Fibonacci number patterns occur so frequently in nature that one may ask if it is a "law 
of nature". 

Why?

• The phenomenon isn’t a physical 
law.  It is, however, a prevalent 
tendency.

• Four-petalled flowers are not so rare as the four-leaf clover is reputed to be, and 
deviations, sometimes large ones, from Fibonacci patterns have been found. 



• We saw the Fibonacci numbers appear in (idealized) rabbit and bee populations, petals of a 
flower, leaves around branches, seeds on seed-heads, and in fruit and vegetables like 
pineapples and cauliflowers. 

Why?

• The answer lies in packings - the best arrangement of objects to minimize wasted space; or 
to say it another way, maximize useful space. 

• We explained why they appear in the rabbit and bee populations, but why does nature use 
the Golden ratio and Fibonacci numbers in so many plants? 



• If you were asked what was the best way to pack objects your answer would depend on the 
shape of the objects since....

Packings

• ...square objects would pack most closely in a rectangular array,

• … whereas round objects pack better in a hexagonal arrangement.



• Seeds are mostly round, so why 
doesn't nature use hexagonal 
arrangements for seedheads?

Packings

• Although hexagonal symmetry is the 
best packing for circular seeds, it 
doesn't answer how leaves should be 
arranged around a stem or how to 
pack flower-heads with seeds that 
grow in size.



• Nature seems to use the same pattern to place seeds on a 
seedhead, arrange petals around the edge of a flower, and 
place leaves round a stem. 

Packings

• Not only that but all these patterns maintain their optimal 
packing structure as the plant continues to grow.

• This is a lot to ask of a single process!  
How do plants grow and maintain this optimal design??



• Botanists have shown that plants grow from a single tiny group of cells right at the tip of 
any growing plant, called the meristem. 

The meristem

• Once formed at the meristem, the new 
cells grow in size.  
So, the growing point keeps moving 
upward and outward.

• A meristem is at the end of each 
branch or twig where new cells are 
formed. 



• A meristem moves in a circular pattern in space, 
or in a helical fashion in spacetime.

The meristem

• These cells may then become a new branch, 
petals, seeds, or whatever.

• The stem turns by an angle and then a new cell 
appears, turns again and another new cell is 
formed, and so on.



• The amazing thing is that a single fixed angle can 
produce this optimal design no matter how big the 
plant grows. 

The meristem

• Once an angle is fixed for a leaf, that leaf will least 
obscure the leaves below and be least obscured by 
any future leaves above it. 

• Once a seed is positioned on a seedhead, it  is 
pushed out in a straight line by other new seeds, 
retaining its original angle on the seedhead. 



One fixed angle

• All this can be done with a single fixed angle of rotation between new cells?  
Yes! This was suspected by people as early as the last century. 

• The principle that a single angle 
produces uniform packings no 
matter how much growth occurs 
was only proved mathematically in 
1993 by Douady and Couder, two 
French mathematicians.



• A new leaf, seed, or petal is made every 0.618 turns. 
In terms of degrees, this is 0.618 • 360°  = 222.5º.  
However, we tend to "see" the smaller angle of 137.5º.

One fixed angle

• You’ve probably  guessed what the fixed angle of turn is:    
phi turns per new cell, or Phi cells per turn.



• If there phi = 0.618 turns per leaf, then we get a packing such that each leaf gets the 
maximum exposure to light, casting the least shadow on the others.  

• This also gives the largest possible area exposed to falling rain so the rain is directed 
back along the leaf and down the stem to the roots.  

• For flowers, it also gives the best exposure to attract insects for pollination. 

• The whole of the plant seems to produce its leaves, flower head petals, and then seeds 
based upon the golden number.

One fixed angle



• But why do the Fibonacci numbers appear as leaf arrangements, and as the number of 
spirals on seedheads? 

One fixed angle

• Let's see why phi is the best 
angle to use.

• Because the Fibonacci numbers form 
the best integer fractions to the 
golden ratio!



• Why not 0.5 or 0.48 or 1.6 or some other number of turns per new cell?

Exact is fruitless

• In terms of seeds - which develop into fruit - what are fruitful numbers?  
It turns out that numbers which are simple fractions are not good choices.

• First, agree that turning 0.6 of a turn is exactly the same as turning 1.6 turns or 2.6 turns 
or 12.6 turns because the position of the point remains the same. 
We can ignore the whole number part and only examine the fractional part. 



Exact is fruitless

• With a simple number like 0.5 turns per seed 
we get just 2 "arms" and the seeds use the 
space very inefficiently: the seedhead is 
long and floppy. 

• You can see the new seeds appearing from 
the central growing point as the older ones 
are pushed outwards in a straight line. 

• A circular seedhead is more compact and 
would have better mechanical strength and 
so be better able to withstand wind and 
heavy rain.



• Here is 0.48 turns between seeds.

Exact is fruitless

• The seeds seem to be sprayed from two 
revolving "arms". Since 0.48 is a bit less than 
0.5, the "arms" seem to rotate backwards a 
bit each time. 

• If we used 0.52 seeds per turn, we would be a 
little in advance of half a turn and the final 
pattern would be a mirror-image.



• What do you think will happen with 0.6 
turns between seeds?

Exact is fruitless

• Did you expect it to be so different? 
Notice how the seeds are not equally 
spaced, but fairly soon settle down to 5 
"arms". 

• This happens because 0.6 = 3/5.  
So every 3 turns will have produced exactly 
5 seeds, and the sixth seed will be at the 
same angle as the first and so on. 



Exact is fruitless

• Using a value closer to phi, namely 0.61, is 
better, but that there are still large gaps 
between the seeds nearest the center, so the 
space is not best used. 

• In fact, any number that can be written as an 
exact ratio (a rational number) isn’t good as a 
turn-per-seed angle.

• If we use t/n as our angle, then we will end up 
with n straight arms, the seeds being placed 
every tth arm.



• So what is a "good" value?  One that is NOT an exact ratio since very large seed heads 
will eventually end up with seeds in straight lines.

Irrationals are best

The pi animation has 7 arms since its 
0.14159 turns per seed is a bit less than 
5/7.  If we took more and more seeds, the 
spirals alter and we would get better 
approximations to pi.

• Numbers which cannot be expressed exactly as a ratio are called irrational numbers and 
this description applies to such values as pi (3.14159) …



• … and e (2.71827).

The e animation also has 7 arms since its 
0.71827 turns per seed is a bit more than 
5/7.  

So the "arms" bend in the opposite 
direction to that of pi's. 

Again, more seeds would destroy the 
pattern as we got closer to e.

Irrationals are best



• What is "the best" irrational number?  
One that never settles down to a rational approximation for very long. 

• Which is why you see Fibonacci sequences 
in meristems!

• No matter how big the seed head gets, the 
seeds are always equally spaced. 

Most fruitful

• The simplest such numbers are Phi and phi, whose rational approximations are: 
   phi:   1/1,  1/2,  2/3,  3/5,  5/8,  8/13,  13/21, ... 
   Phi:   1/1,  2/1,  3/2,  5/3,  8/5,  13/8,  21/13, …



• This movie which shows various turns 
per seed values near phi.

• This shows that there are always gaps 
towards the outer edge of the 
seedhead and that phi gives the best 
value for all sizes of the seedhead.

Most fruitful



• The "greatest European mathematician of the middle ages”. His full name was Leonardo of 
Pisano, since he was born about 1175 in Pisa.

Son of Bonacci

• Pisa was an important commercial town in its day, and Leonardo's father, Guglielmo 
Bonaccio, was a customs officer in the North African town of Bougie.



• Leonardo grew up with a North African education under the Moors and later traveled 
extensively around the Mediterranean coast. 

Son of Bonacci

• He met many merchants and learned of their 
systems for doing arithmetic, and soon realized the 
many advantages of the "Hindu-Arabic" system 
over the “Roman” system, and introduced it into 
Europe. 



• He called himself Fibonacci, short for “filius Bonacci” meaning “son of Bonacci”. Sometimes 
he used Leonardo Bigollo since, in Tuscany, bigollo means a traveler. 

Son of Bonacci

• Others think Bonacci may be a kind of nickname meaning 
"lucky son" , literally, "son of good fortune".

• Early writers on Fibonacci regarded Bonacci as a family name so that Fib-
Bonacci is like the English names of Robin-son or John-son.



Fibonacci art

Ned May



Fibonacci art

Ned May



Fibonacci art

Ned May



Fibonacci art

Ned May



Fibonacci art

Ned May



Fibonacci art

Billie Ruth Sudduth 



Fibonacci art

• The  chimney of the Turku power station 
in Finland has the Fibonacci numbers on 
it in 2 m neon lights.  

• It was the first commission of the Turku 
City Environmental Art Project in 1994.  

• The artist, Mario Merz, calls it 
“Fibonacci Sequence 1-55” and says "it is 
a metaphor of the human quest for 
order and harmony among chaos."


