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1. Executive Summary

What's New:

• Automation of the verification analyses. Generating numerical solutions, comparing the numerical and analytical

solutions, performing a verification analysis, and plotting the key results does not need to be run by hand anymore.

Execution of a single Perl script will complete these tasks for all 1D versions of the test problems.

• Execution of the verification analyses on adaptive grids. Most complex simulations use adaptive mesh refinement

(AMR). It is important to know if the fundamental assertion of AMR, that solutions on adaptive grids are as

accurate as the solutions on corresponding uniform grids, is fulfilled for the Tri-Lab problems.

• Archiving of analytic solution codes and input decks. Building on previous efforts often required knowing who

to ask for what. In some cases, new analytic solution codes had to be written from scratch because the `owner'

left the Lab leaving no obvious traces of their codes. All analytic solution codes and input decks are now in a

centralized repository.

Results:

• Improvement in computational efficiency by using adaptive grids on the Tri-Lab test problems is usually about

a factor of ten for 4-6 levels of mesh refinement, but this productivity gain isn't generally accompanied by a

corresponding reduction in the error between the numerical and analytical solutions when the default AMR

settings are used. For several Tri-Lab test problems the errors on adaptive grids appear to be larger than the

errors on corresponding uniform grids.

• Performance on realistic applications might be robust if multi-material or multi-temperature physics in complex

geometries mitigates difficulties exposed by simpler test problems on adaptive grids in basic geometries.

Recommended Directions:

• Develop and implement better AMR packages for Code Project A. Tremendous resources have gone into de-

veloping the physics modules, but not the grid technology on which that physics is computed. There doesn't

appear to be a single team directly associated with Code Project A examining present and next-generation AMR

technology - this represents a growth opportunity.

• Augment the present suite with new problems that exercise multi-material and/or multi-temperature capabilities.

In parallel, develop rigorous calculation verification procedures for complex physics problems that don't admit

an exact solution. Finally, automated verification analysis should be completed for two and three dimensional

versions of all the existing Tri-Lab test problems to assess how well AMR hydrocodes retain fidelity to the

underlying physics when motions and gradients are not grid-aligned.
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2. Automation

Generating numerical solutions, comparing the numerical and analytical solutions, performing a verification

analysis, and plotting the key results does not need to be run by hand anymore. Execution of an automation tool will

complete these tasks for all 1D versions of the test problems. Extending the automation to 2D and 3D versions of the

Tri-Lab test suite should be a priority of next year's program.

The automation tool requires a control deck containing command lines with specific information about the partic-

ular analyses (i.e., test problem definition, code designation, number of simulation runs, and the type of convergence

analysis to be performed) to be performed, and a list of directories in which to find the results of the numerical

simulations (Hrbek et al. 2005).

RAGE is run on a set of input decks, one for for each grid resolution. This creates a set of binary dump files which

contain the solution data on the native grid. John Grove's AMHCTOOLS (2005) extracts the solution data and outputs

it to an ASCII text file. While exacting the native data isn't vital on uniform meshes, it is critical for verification

analyses on adaptive grids because RAGE interpolates the native data onto a uniform mesh when returning data in

either HDF 4 or SDSS formats. The analytic solution is then run live (as opposed to pre-computed) on the exact

same grid as used in the RAGE calculations. This is useful when convergence analyses are done on adaptive grids.

Various error norms are then computed for each grid by comparing the analytic and numerical solutions. Finally the

convergence coefficients are calculated by comparing error norms on all grids.

Access results from simulation

Parse output from simulation

Solve exact problem at the simulation 
points and compare against simulated 
results (verification)

Results of a 
simulation 
from CTS

Grid Points
Extracted

Exact Analytic
Program

Verification

Exact Solution 
for Grid Points

Figure 1. - Present (left) and potential future (right) flow of the automated verification analysis for Code Project A.

Figure 1 shows the present automation work-flow at a higher level. Each simulation is identified and parsed

to extract the structured mesh for that time snapshot (Step 1). This mesh information is then used in the computer

program to generate the equivalent analytic solution (Step 2) and perform the verification analysis and generate a

report of the rates of convergence (Step 3). Note that this approach also allows for a modular implementation. This

procedure varies slightly from that used for Code Project B, which treats Steps 2 and 3 as entirely separate entities. In

the next phase of automation outlined in Figure 2, only the exact analytic solutions will be generated inside the exact

analytic programs and the verification analyses will be handled in a Verification module.
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An initial efforts has also been made to identify potential impediments to having the same verification analysis

tools operate for both Code projects A and B (Hrbek et al. 2005). This approach is essential to abstracting automation

efforts and allowing a common, modular script to be written. Issues such as the consistency in file directory naming

conventions and common file structures were considered. Each of the ASC Projects has its own output file structures.

When these are added to the binary link files for the Legacy codes, being able to easily access results from each of

the computer simulation codes becomes daunting. The previously mentioned AMHCTOOLS Project of John Grove

may be able to provide a tool for interpreting the various formats. Alternatively, an API option suggested by Mabel

Grey-Vigil (X-3) and Chuck Wingate (X-3) for direct query of dump files could be another option.
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3. Tri-Lab Verification Test Suite

3.1 The Su & Olson Problem

The Su & Olson problem is a one-dimensional, half-space, non-equilibrium Marshak wave problem. The radiative

transfer model is a one-group diffusion approximation with a finite radiation source boundary condition, where the

radiative and material fields are out of equilibrium. As the energy density of the radiation field increases, energy is

transfered to the material. Su & Olson (1996) found a solution, to quadrature, for the distribution of radiative energy

and material temperature as a function of spacetime. This problem is useful for verifying time-dependent radiation

diffusion codes.

z=0 z=20 cmTrad = 1keV

κ = 1.0 cm2/g

ρ = 1.0 g/cm3

Tmat = 0 ev

α = 4a erg/cm3

Figure 3. - Setup and parameters for the Su & Olson problem.

3.1.1 Analytical Solution

Given the one-dimensional domain (0 ⇧ z ⇧ �), the radiation temperature Trad,boundary(z = 0, t) at the bound-

ary, the total opacity �, and the desired solution point in time t, one begins by forming the dimensionless variables

x =
⌦

3�z ✏ =
⌥

4ac�
�

�
t ⌅ =

4a
�

, (1)

where a is the radiation constant, c is the speed of light, and � is determined from the specific heat of the material

cv = �T 3
mat. For the Tri-Lab Verification problem it is assumed the material equation of state obeys Emat = aT 4

mat,

so that � = 4a. One now computes the dimensionless solution for the radiation energy density

u(x, ✏, ⌅) =1 � 2
⌦

3
�

� 1

0

⇣

✓sin
⇤
x⇤1(⌃, ⌅) + ⌥1(⌃)

⌅

⌃
⇠

3 + 4⇤2
1(⌃, ⌅)

⌘

◆ d⌃

�
⌦

3e��

�

� 1

0

⇣

✓ sin
⇤
x⇤2(⌃, ⌅) + ⌥2(⌃)

⌅

⌃(1 + ⌅⌃)
⇠

3 + 4⇤2
2(⌃, ⌅)

⌘

◆ e
��
⌅⇧ d⌃ (2)
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followed by the dimensionless solution for the material energy density

v(x, ✏, ⌅) = u(x, ✏, ⌅) � 2
⌦

3
�

� 1

0

⇣

✓ sin
⇤
x⇤3(⌃, ⌅) + ⌥3(⌃)

⌅
⇠

4 � ⌃2 + 4⌅⌃2(1 � ⌃2)

⌘

◆ e��(1�⇧2) d⌃

+
⌦

3e��

�

� 1

0

⇣

✓sin
⇤
x⇤2(⌃, ⌅) + ⌥2(⌃)

⌅

⌃
⇠

3 + 4⇤2
2(⌃, ⌅)

⌘

◆ e
��
⌅⇧ d⌃ , (3)

where

⇤1(⌃, ⌅) = ⌃

⇡

⌅+
1

(1 � ⌃2)
⇤2(⌃, ⌅) =

⇡

(1 � ⌃)
⌥
⌅+

1
⌃

�
⇤3(⌃, ⌅) =

⇡

(1 � ⌃2)
⌥
⌅+

1
⌃2

�
(4)

and

⌥n(⌃, ⌅) = arccos

⇡
3

3 + 4⇤2
n(⌃, ⌅)

, n = 1,2,3. (5)

The physical radiation energy density and material temperatures follow as

Erad(z, t) = u(x, ✏, ⌅) · Erad(z = 0, t) = u(x, ✏, ⌅) · aT 4
rad,boundary

aT 4
mat(z, t) = v(x, ✏, ⌅) · Erad(z = 0, t) = v(x, ✏, ⌅) · aT 4

rad,boundary (6)

Figure 4 shows the ⇤i of equation (4), ⌥i of equation (5), and some representations of the four integrands in

equations. (2) and (3). While all the integrands are oscillatory for the parameter choices used in Figure 4 - they are

not always oscillatory! - the first integral in equation (3) for the material energy density (green curves) is particularly

challenging to evaluate.

A code to compute this mildly complicated analytic solution wasn't readily available when this project started

in October 2004. Gordon Olson apparently had the only functional code and was no longer at LANL. So, one of us

(Timmes) wrote a new fortran code to calculate the analytic solution (see Appendix B). This new code duplicates all

four tables in the Su & Olson (1996) paper.

On March 28, 2005, Timmes received an email message from Gordon Olson containing his fortran code for the

solution to the Su & Olson problem. A comparison of the two codes several similarities: both codes use a Romberg

integration and both codes address cases when the integrands are not oscillatory. A comparison of the solutions

generated by each code should be addressed in the future efforts.
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Figure 4. - Key components of the Su & Olson solution. The top left panel shows the ⇤i of equation (4), the top right

panel shows the ⌥i of equation (5), and the bottom panel shows the four integrands of equations. (2) and (3) for a

few select choices of their input parameters.

3.1.2 Verification Analysis on 1D Uniform and Adaptive Grids

RAGE 20041126.030, 20041126.032, 20050331.02, 20050331.31, 20050331.41, and 20050818.0000 was used

to generate numerical solutions to the Su & Olson problem on uniform and adaptive grids. This problem was mainly

run on the Linux cluster Lambda. The base RAGE input deck for this problem is the same one used in Kamm &

Kirkpatrick (2004). The input deck was simplified and annotated (see Appendix A) to make it more amenable to

automation, adaptive meshes, and future studies.

Solutions were generated on uniform grids with 50, 100, 200, 400, 800, 1600 and 3200 cells at 1⇤10�11 s,

1⇤10�10 s, and 1⇤10�9 s. Solutions were also computed on adaptive meshes with an effective resolution (if maximally

refined everywhere) of 100, 200, 400, 800, 1600, and 3200 cells at the same time points. These six effective resolution

grids correspond to six levels of adaptive mesh refinement. The 100 cell formed the Level 1 adaptive grid, and the
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sizemat parameter was used to increase the potential maximal refinement level. Other mesh refinement variables

such as numfine, numlev mxcells and sizbnd were left at their default values (not used).

John Grove's excellent AMHCTOOLS (2005) was used to obtain the solution data on the native grid. While

exacting the native data isn't vital on uniform meshes, it is critical for verification analyses on adaptive grids because

RAGE interpolates the native data onto a uniform mesh when returning data in either HDF 4 or SDSS formats.

Figure 5 compares the solutions on uniform and adaptive meshes. Solutions are shown for 0.001, 0.01 and 0.1

shakes. Initially, the radiation streams into the slab and the material temperature lags behind the radiation temperature.

As the radiation energy density builds up, the material temperature catches up, and by t = 0.1 sh, the radiation and

material temperatures are essentially identical.
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Figure 5. - The plot on the left compares the numerical (solid curves) and analytical (open circles) solutions for the

radiation temperature (purple) and material temperature (red) on a uniform grid with 200 cells. The plot on the right

shows the numerical solution (lines) on an adaptive mesh with 4 levels of refinement, and circles mark the location of

the adaptive grid points.

The right hand side plot in Figure 5 shows there is a fair amount of adaptive mesh refinement occurring at early

times (0.01 ns), but by 0.1 ns there is only a small clumping of mesh refinement around the 4 cm point. At 1.0 ns

the small clump of refinement has moved out to 12 cm. This small clump of refinement is due to generation of an

unphysical oscillation in the energy densities.

Following Chapelle (1999), we'll define the patch-extent weighted absolute L1 norm, the relative L1 norm, the

patch-extent weighted L2 norm, and the relative L2 norm as

L1,abs =


(f exact
i � f rage

i )⇥xi
⇥xi

L1,rel =


(f exact
i � f rage

i )
f exact

i

L2,abs =

�
(f exact

i � f rage
i )2⇥xi

⇥xi

✏1/2

L2,rel =

�
(f exact

i � f rage
i )2


(f exact

i )2

✏1/2

(7)
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Figure 6 shows the absolute value of the point-wise L1,rel error for the radiation and material temperatures on

uniform and adaptive grids at t=0.1 sh. The cusps in the curves are due to sign changes in the error. The large,

persistent errors at the x=20 cm right boundary are probably caused by the Marshak wave hitting the right boundary

at 0.1 sh. But there may be two additional reasons why the errors get large for small values of the temperature or

energy densities. First, there are limits to how accurate one can obtain the analytical solution near the leading edge

of the Marshak wave where the deviations from the ambient background are small. Second, in RAGE, one runs this

problem with a non-zero ambient material temperature, while the analytic calculation assumes an identically zero

initial value. These issues should be investigated in a follow-up report.

Away from the right boundary, the convergence behavior on uniform grids saturates around 800 grid points.

Running the Su & Olson problem with 3200 uniform grid points doesn't appear to improve the quality of the solution.
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Figure 6. - Absolute value of the point-wise L1,rel norm for the radiation and material temperatures on uniform and

adaptive grids at t=0.1 sh.
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Figure 6 suggests the default values for the adaptive mesh refinement criteria don't produce significant amounts

of refinement. As a result, the errors are basically independent of the refinement level. Decreasing the parameter

tevcut from its default value of 100 eV to 10eV and 1eV, as suggested by Mike Gittings, didn't significantly

increase the number of grid points. Adaptive mesh refinement, used mainly with the default parameter settings,

seems to produce little improvement in reducing the errors in the Su & Olson problem. Note the deviations around

12.0 cm from a smooth solution in the adaptive mesh solutions. This feature is absent in the uniform mesh case,

and appears to be seeded very early (t ⇧ 10�11 s) in the evolution. The nature and removal of this feature should be

investigated in a follow-up report.

Figure 7 shows various global error norms of radiation and material temperatures on uniform grids at t=0.1 sh.

The global convergence rate at the finest resolutions is dominated by the large, stubborn residuals at the right boundary

(see Figure 6).
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Figure 7. - Global error norms for the radiation and material temperature as a function of uniform grid spacing.

The black lines show slopes of 0, 1, and 2. After an initial convergence rate of q ⌥ 1.5, all the norms display a slow

convergence rate of q ⌥ 0.1.

Assuming the global error between the numerical and analytical solutions depends only on the cell size, Error =

A (⇥ x)q, the rate of convergence q was computed for all uniform grid pairs as

q = log
 

Efine grid

Ecourse grid

⌦↵
log

 
⇥xfine grid

⇥xcoarse grid

⌦
. (8)

Table 1 shows the convergence rate on uniform grids for the L1,abs norm decreases from q ⌥ 1.5 for the largest cell

sizes to q ⌥ 0.1 at the finest resolutions. Similar convergence rates hold for the other error norms. A slowing of

the convergence rate at smaller cell sizes was also found by Kamm & Kirkpatrick (2004). A few runs with a smaller

maximum allowed time-steps (RAGE parameter de tevpct=0.003, 0.001, and 0.0005) did not significantly alter

the convergence rates.
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Table 1

Global Convergence Coefficients for the Su & Olson Problem1

Trad Tmat

# of cells L1,abs q A L1,abs q A

50 1.310

100 0.401 1.674 916.2 0.479 1.541 579.4

200 0.184 1.154 83.20 0.249 0.946 37.41

400 0.129 0.510 2.750 0.196 0.342 1.525

800 0.115 0.159 0.336 0.182 0.109 0.375

1600 0.112 0.043 0.155 0.177 0.036 0.232

1 For the L1,abs norm on uniform grids with RAGE 20050818.0000

The ratio of the CPU resources consumed by the uniform and adaptive grid calculations are shown in Figure 8 as

a function of refinement level. While the improvement in computational efficiency is larger than a factor of 10 for 6

levels of mesh refinement, Figure 6 demonstrates this isn't necessarily accompanied by a corresponding reduction in

the errors.
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Figure 8. - CPU usage on uniform and adaptive grids for the one-dimensional Su & Olson problem.
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3.2 The Coggeshall #8 Problem

Coggeshall (1991) developed a collection of analytic, similarity solutions for the one-dimensional hydrodynamics

equations. Analytical solution #8 represents a fluid flow with heat conduction:

�(r, t) = �0 r(k�1)/(⇥��+4) t�(k+1)�(k�1)/(⇥��+4)

T (r, t) = T0 r(1�k)/(⇥��+4) t(1�⇤)(k+1)+(k�1)/(⇥��+4)

v(r, t) = r/t . (9)

Note the parameter labeled `�0' in equation (10) doesn't have units of a mass density, nor does `T0' have units of a

temperature. Instead, each has units such that the when multiplied by the spacetime components of equation (9),

they yield quantities with the expected units. Both RAGE and the analytic solution codes provided with this problem

(Kamm & Kirkpatrick 2004) use �=-1, ⇥=2, k = 2 for spherical symmetry (see Figure 9), and a perfect gas equation

of state with ⇤=5/3. In this case, �0 = 3 g cm�3+1/7 s�3�1/7, and T0 = 2000 eV cm�1/7 s�2+1/7.

t=10 sh

t=20 sh

Figure 9. - Setup for the spherically symmetric Coggeshall #8 problem. The analytic solution at t=10 sh is used as

the initial condition in RAGE. The numerical solution is then evolved to t=20 sh.

3.2.1 Analytical Solution

The similarity point solution of must be modified for an use in, or comparison with, Eulerian hydrocodes. Define

seventh =
k � 1

⇥ ��+ 4
rexp = seventh texp = (k + 1) + seventh . (10)

For a cell with left xl and right xr boundaries, the cell volume, mass, and momentum are

dv =
4�

k + 1

⇧
xrk+1 � xlk+1

⌃
dm = 4��0

�
xrk+1+rexp � xlk+1+rexp

texp1 ttexp

✏

dmv = 4��0

�
xrk+2+rexp � xlk+2+rexp

(texp + 1) ttexp+1

✏
. (11)
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The mass density �, velocity v, energy density Ev, specific energy density e, temperature T , and pressure P are then

� =
dm
dv

v =
dmv
dm

Ev =
�0T0cv

t5

e =
Ev

�
T =

e
cv

P = (⇤ � 1)e . (12)

Initial comparisons between the numerical and analytical results led to the finding that the supplied analytic code had

an error in the time exponent for the momentum dmv. The analytic code used (texp � 1) instead of (texp + 1). A

corrected code is listed in Appendix B.

3.2.2 Verification Analysis on 1D Uniform and Adaptive Grids

RAGE 20041126.030, 20041126.032, 20050331.02, 20050331.31, 20050331.41, and 20050818.0000 on the

Linux cluster Lambda was used to generate numerical solutions to the Coggeshall #8 problem. The starting RAGE

input deck for this problem was the same one used by Kamm & Kirkpatrick (2004). The input deck was simplified

and annotated (see Appendix A) to make it more amenable to automation, adaptive meshes, and future studies.

Initial conditions at 10 sh were generated by the analytic solution on uniform grids with 100, 200, 400, 800, 1600,

3200, and 6400 cells. Appendix A details some of the subtleties associated with the initial conditions. Solutions

were also computed on adaptive meshes with an effective resolution (if maximally refined everywhere) of 100, 200,

400, 800, 1600, 3200 and 6400 cells. These six effective resolution grids correspond to six levels of adaptive mesh

refinement. The 100 cell formed the Level 1 adaptive grid, and the sizemat parameter was used to increase the

potential maximal refinement level. Other mesh refinement variables such as numfine, numlev mxcells and

sizbnd were left at their default values (not used).Grove's AMHCTOOLS (2005) was used to extract the solution

data on the native grid from the binary dump files.

Figure 10 shows solutions at 20 sh on uniform and adaptive meshes. The lower panel suggests that allowing 4

levels of refinement adds some additional grid at the left and right boundaries, but otherwise has the same grid as the

base 100 cell simulation. This might be expected given the usage of default regridding parameters and the similarity

nature of the solution; once the spatial grids are refined at the initial conditions, no new grid is added. Note that the 1

level and 4 level simulations attain different solutions at the left boundary.

Figure 11 shows the point-wise L1,rel error for the density, pressure, and velocity on uniform and adaptive grids.

In general, the errors get smaller with increasing uniform grid resolution. However, there are large, persistent errors

at the boundaries. Errors at the left boundary may be due to the coordinate singularity at the origin. It is unclear as

of this writing what is causing the errors at the right boundary. On adaptive grids, there is little reduction in the error

as the spatial resolution is increased when the default AMR parameters are used. Once gradients are refined at the

initial conditions, iit seems that no new grid is added because the solution is self-similar.
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Figure 10. - The top plot shows the analytical (solid curves) and numerical (symbols) solutions at t=20 sh for the

mass density (red), velocity (green), pressure (blue), and temperature (purple). The bottom plots show the solution

with 1 level of refinement (left) and 4 levels of refinement (right), where circles mark the location of the adaptive grid

points.
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Figure 11. - Absolute value of the point-wise L1,rel error for the density, pressure, and velocity on uniform and adaptive

grids at 20 sh.
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Figure 12 shows various global error norms on uniform grids computed from equation (7). The rate of conver-

gence on coarse grids is usually quadratic (q ⌥ 2), but degrades at finer grids to sub-linear (q ⇧ 0.5) because of the

large, persistent errors at the boundaries. Note the rate of convergence in the velocity becomes worse as the spatial

resolution Table 2 details the global convergence rate properties of the L1,abs norm, assuming the error ansatz of

equation (8).
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Figure 12. - Global error norms on uniform grids for the mass density, material temperature, pressure, and velocity

at t=20 sh. The black lines show slopes of 0, 1, and 2.
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Table 2

Global convergence coefficients for the Coggeshall #8 problem1

� v P T

# of cells q A q A q A q A

100 1.10 0.040 2.10 1.4E+07 1.904 7.1E+13 1.415 70.33

200 1.21 0.065 2.30 3.5E+07 1.678 2.5E+13 1.249 34.15

400 0.992 0.021 0.327 1041.7 0.998 6.8E+11 0.892 5.143

800 0.751 0.005 -0.813 1.120 0.197 5.6E+09 0.661 1.291

1600 0.639 0.003 -0.137 103.0 0.065 2.3E+09 0.497 4.311

1 For the L1,abs norm on uniform grids with RAGE 20050818.0000

The ratio of the CPU resources consumed by the uniform and adaptive grid calculations are shown in Figure 13

as a function of refinement level. While the improvement in computational efficiency is larger than a factor of 10

for 7 levels of mesh refinement, Figure 11 suggests the reduction in CPU resources by using an adaptive grid isn't

necessarily attended by a similar reduction in L1 error norms.
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Figure 13. - CPU usage on uniform and adaptive grids for the one-dimensional Coggeshall #8 problem.
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3.3 The Mader Problem

Ignite a slab of HE on one side and let a one-dimensional detonation propagate to the other side. A simple

rarefaction or Taylor wave follows the detonation (Kirkpatrick et al. 2004, Kamm & Kirkpatrick 2004). Expansion

of material in the rarefaction depends on the boundary condition where the detonation is initiated, which is usually

modeled as a freely moving surface or a moving piston. For the Mader problem, a stationary piston is used. In

this case, the head of the rarefaction remains at the detonation front since the flow is sonic there, and the tail of the

rarefaction is halfway between the front and the piston.

FuelAsh Reaction Zone

Transverse waves

Triple point

Weak shock

V
piston

 = 0

Figure 14. - Setup for the one-dimensional Mader problem. A 5 cm slab of HE is at rest with a density of 1.875

g/cm3, temperature of 0.025 eV, and an equation of state characterized by ⇤ = 3. The Chapman-Jouget detonation

speed is set to 0.8 cm/µs, thus taking 6.25 µs for the detonation to reach the x=0 boundary. The rich structure of

a multi-dimensional detonation is absent in one-dimensional simulations, and a simple rarefaction wave follows the

detonation front.

3.3.1 Analytical Solution

The analytic result for the rarefaction wave behind the detonation is given very concisely on page 24 of Fickett

& Davis (1979). For comparison with an Eulerian hydrocode, the point solution must be averaged. Given the time t,

position in the fixed lab frame xlab, width of the cell ⇥x, the piston speed vpiston Chapman-Jouget pressure behind the

detonation from Pj , Chapman-Jouget detonation speed Dj , and the equation of state characterized by ⇤, one forms

�0 =
Pj

D2
j

(⇤ + 1) �j = �0

⌥
⇤ + 1
⇤

�

cj = Dj

⌥
⇤

⇤ + 1

�
vj =

Dj

⇤ + 1
xdet = Djt � xlab , (13)

where the last expression for xdet gives the spatial coordinate relative to the (moving) detonation front. Auxiliary

expressions of use are

a =
1

2cjt
b =

2 � (⇤ � 1)uj/cj

(⇤ + 1)
d =

2
⇤
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xl = xdet � 1
2

⇥x xr = xdet +
1
2

⇥x

xL = xdet � ⇥x xR = xdet + ⇥x . (14)

The transition between the rarefaction fan and the constant state is determined from the quantities

vm =
⌥

vj � 2cj

⇤ � 1

�⌥
⇤ � 1
⇤ + 1

�
xp =

1
2

(⇤ + 1)t(vpiston � vm) (15)

In the rarefaction fan, xdet < xp, the solution for the material speed, pressure, sound speed and mass density is

v(xlab, t) =
2

(⇤ + 1)
xdet

t
+

�
vj � 2cj

(⇤ � 1)

✏⌥
⇤ � 1
⇤ + 1

�

P (xlab, t) = Pj

��
axR + b

⇥b+1 �
�
axL + b

⇥b+1

a(b + 1)⇥x

✏

c(xlab, t) = cj(axR + b)

�(xlab, t) = �j

��
axR + b

⇥d+1 �
�
axL + b

⇥d+1

a(d + 1)⇥x

✏
. (16)

Outside the rarefaction fan, xdet > xp, the solution for the material speed, pressure, sound speed and mass density

is a constant state given by

v(xlab, t) = vpiston

P (xlab, t) = Pj

�
1 + (⇤ � 1)

v(xlab, t) � vj

2cj

✏d/(⇤�1)

c(xlab, t) = cj

�
1 + (⇤ � 1)

v(xlab, t) � vj

2cj

✏

�(xlab, t) = �j

�
P (xlab, t)

Pj

�1/⇤

. (17)

A fortran code to calculate the analytic solution is given in appendix B, and based on the codes used by Kamm

& Kirkpatrick (2004).
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3.3.2 Verification Analysis on 1D Uniform and Adaptive Grids

NOBEL 20041126.002 and 20050331.021 was run on the Linux cluster Lambda to generate numerical solutions

to the Mader problem using the initial conditions and parameters described in Figure 14. These initial conditions

were evolved to 6.25⇤10�6 s and Grove's AMHCTOOLS (2005) was used to extract the solution data on the native

grid from the binary dump files.

The NOBEL input deck was the same one used by Kamm & Kirkpatrick (2004), but modified to make it amenable

to automation, and adaptive meshes (see Appendix A). The Mader problem's special .teos equation of state file had

to be re-generated due to internal changes in the NOBEL code since Kamm & Kirkpatrick (2004).

Initial conditions were generated on uniform grids with 100, 200, 400, 800, 1600, 3200, and 6400 cells. Solutions

were also computed on adaptive meshes with an effective resolution (if maximally refined everywhere) of 100, 200,

400, 800, 1600, 3200 and 6400 cells. These seven effective resolution grids correspond to seven levels of adaptive

mesh refinement. The 100 cell formed the Level 1 adaptive grid, and the sizemat parameter was used to increase

the potential maximal refinement level. All other mesh refinement variables were left at their default values.

Figure 15 shows solutions to the Mader problem on uniform and adaptive grids. The detonation wave is initiated

at x = 5.0 cm and propagates to the left. The top panel compares the analytical and numerical solutions for sound

speed, velocity, density, and pressure at 6.25 µs on a 200 cell uniform mesh. These quantities decrease smoothly from

the head of the detonation at x=0.0 cm to the center of the slab at 2.5 cm. In this region, the profiles for sound speed,

velocity and density are linear with position, while the pressure profile is a cubic. Since the piston is stationary, the

constant state profile begins exactly halfway through the domain. Even at this visual level of comparison, one can

see differences between the numerical and analytical solutions. In essence, this is because the numerical detonation

front does not quite reach x=0.0 cm in 6.25 µs.

The middle and bottom panels of Figure 15 show four stills taken from a movie of the Mader problem with 4

levels of refinement. Circles mark the locations of the adaptive grid points. The total number of grid points and the

time is given above each still in the title line. The first three plots are consecutive frames from the movie that show

the `flashing' grid phenomena which occurs throughout most of the simulation time. When using the default AMR

parameter settings, the adaptive grid appears to refine (218 grid points in the first still), de-refine (148 grid points in

the second still), and refine again (220 grid points in the third still). A positive feature is the refinement of regions

slightly ahead of the detonation. That is, the detonation propagates into a maximally refined region. Sharp eyes will

also notice a clumping of the grid points behind the shock in the first and third stills. That is, there is a dense grouping

of grid points followed by a less dense grouping followed by another dense grouping, It is not until quite late in the

simulation that the grid behavior stabilizes (132 grid points in the fourth still) and displays no discernible evidence of

flashing or clumping.

Figure 16 shows the absolute value of the pointwise L1,rel error for the density, pressure, and velocity on uniform

and adaptive grids at 6.25 µs. Large, persistent errors exist at the x=0 cm left boundary, and are due to the numerical

detonation wave not reaching the left boundary by 6.25 µs. The head of the detonation front remains about 0.03 cm

away from making contact with and burning the material at the boundary, independent of resolution. Failure to reach

the prescribed spacetime point may be due to a slower detonation speed that was introduced by the need to re-create

the .teos equation of state file, or that the forrest-fire model parameters implemented through the .teos file were
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Figure 15. - The top plot shows analytical (curves) and numerical (symbols) solutions for the mass density (red), the

velocity (blue), and pressure (purple) at 6.25 µs on a 200 cell uniform mesh. The middle and bottom panels show

stills from a movie of the Mader problem with 4 levels of refinement, with circles marking the locations of the adaptive

grid points.
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Figure 16. - Absolute value of the point-wise L1,rel error for the density, pressure, and velocity on uniform and

adaptive grids at 6.25 µs.
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derived for a uniform grid spacing of 0.025 cm (K. New, private communication 2005, Kamm & Kirkpatrick 2004).

This discrepancy or user misunderstanding should be investigated in a follow-up report.

Recall the constant state begins exactly halfway through the domain, at 2.5 cm. In this region, Figure 16 suggests

that the errors on uniform and adaptive grid solutions remain constant as the resolution is increased when the default

AMR parameter set is used. In the case of the pressure (middle panel) the error becomes larger with increasing

resolution. In the rarefaction fan behind the detonation front, 0.0 ⇧ x ⇧ 2.5 cm, the errors generally decrease as the

cell spacing decreases on both uniform and adaptive grids.

Figure 17 shows the global error norms on uniform grids computed from equations (7). The rate of convergence

on coarse grids is generally quadratic, q ⌥ 2, but degrades at finer grids to sub-linear, q ⇧ 0.5, because of the large

persistent errors at the left boundary and transitions to the constant state outside the rarefaction fan. Table 3 details

the convergence rate properties for the L1,abs norm.
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Figure 17. - Global rates of convergence for the mass density, pressure, and material velocity. The black lines show

slopes of 0, 1, and 2.
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Table 3

Global Convergence coefficients for the Mader problem1

� P V

# of cells q A q A q A

100 1.65 131.9 1.82 1.1E+14 1.78 6.5E+07

200 0.65 1.126 1.08 3.3E+12 0.85 8.1E+05

400 0.41 0.328 0.64 3.1E+11 0.50 1.3E+05

800 0.28 0.151 0.47 1.1E+11 0.36 5.3E+04

1600 0.16 0.068 0.34 4.7E+10 0.21 2.0E+04

1 For the L1,abs norm on uniform grids with NOBEL 20050331.021

The ratio of the CPU resources consumed by the uniform and adaptive grid calculations are shown in Figure 18

as a function of refinement level. The improvement in computational efficiency is about a factor 10 for 6 levels of

mesh refinement. This reduction in CPU resources by using adaptive grids is accompanied by a reduction in error

that is no worse than the errors incurred by using a uniform grid.
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Figure 18. - CPU usage on uniform and adaptive grids for the one-dimensional Mader problem.
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3.4 The Reinicke & Meyer-ter-Vehn Problem

The Reinicke Meyer-ter-Vehn (1991, henceforth RMTV) problem considered in the Tri-Lab Verification Test

Suite has an initial concentrated energy source of sufficient magnitude so that heat conduction dominates the fluid

flow, that is, a thermal front leads a hydrodynamic shock. RMTV examined the self-similar case and found that

the fluid equations reduced to a set of four ordinary differential equations (ODEs). Due to evaluation of the initial

conditions and multiple-region integration of the complicated ODEs, the RMTV problem has the distinction of

possessing the most complicated `analytical' solution in the Tri-Lab Test Suite. Nevertheless, this problem is useful

for verifying time-dependent thermal conduction codes in the presence of shocks.

Figure 19. - Smooth Particle Hydrodynamics simulation of a heat front with a following planar shock wave.

3.4.1 Analytical Solution

Given the spherically symmetric domain (0 ⇧ r ⇧ �), one assumes a polytropic equation of state for the gas,

(⇤ � 1) E =
P
�

= � T , (18)

a heat conductivity ⇣ given by

⇣ = ⇣0 �a T b , (19)

and a flow evolving into a cold (T = 0) gas with a power-law density profile

�0(r) = g0r⌃G(↵) . (20)

Here ⇤ is the adiabatic exponent, E is the specific internal energy (erg/gr), P is the pressure (erg/cm3), � is the matter

density (gr/cm3), � is the Gr
 
uneisen coefficient, T is the matter temperature (eV), r is the distance from the origin g0

is mass density at the origin, and G(↵) is a dimensionless function of the self-similar position variable ↵. The RMTV

problem in the Tri-Lab Test Suite (see Kamm 2000a) considers the case n=3 (spherical), ⇤=5/4, �=1.0. ⇣0 = 1.0,

a=-2.0, b=6.5, g0=1.0.
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The analytic solution begins by forming

� =
2b � 2a + 1

2b � (n + 2)a + n

� =
2b � 1
�(1 � a)

� =
(2b � 1)n + 2
2a � 2b � 1

µ =
2

(⇤ � 1)
. (21)

The scale factor ⇧ , of the self similar solution is then given by

⇧ =

�
1
�

⌥
⇥0 �b+1 g1�a

0

2⇣0

�1/(2b�1)
✏�

, (22)

where ⇥0 is an eigenvalue such that the solution behaves properly near the origin. Kamm (2000a) found ⇥0 =
7.197534 ⇤ 107, which we adopt for the purposes of automating a version of the RMTV problem.

This problem is also unique since the position of the thermal front is specified and the time required for the

solution to reach this point is derived. Here the leading edge of the thermal conduction front is at rfront = 0.9 cm in

physical space and ↵front = 2.0 in self-similarity space. The physical time corresponding to these specified positions

is

t =
⌥

rfront

⇧ ↵front

�1/�

. (23)

The position of the shock front is also specified to be at ↵shock = 1.0. The shock front position in physical space is

then given by

rshock = ⇧ ↵shock t� . (24)

Integration of the ODEs starts from before the heat front and proceeds through the heat front, through the shock

front, and finally towards the origin. To obtain the initial conditions one seeks the value of a variable Ustart where

the function

f(Ustart) = ln(1 � ⌅) + ⇥0 ↵
(2b�1)/�
front

� Ustart

0
yb�1 (1 � y)b�a 1 � 2y

µ � (µ + 1)y
dy (25)

is zero. The variable Ustart is related to the fluid velocity and is the initial condition for one of the four ODEs. In this

root-find, ⌅ is a small value, taken to be 1 ⇤ 10�12. With Ustart determined, one forms the abscissa from which the

integration begins

↵start = ↵front exp

�
⇥0 ↵

(2b�1)/�
front

� Ustart

0
yb�1 (1 � y)b�a 1 � 2y

µ � (µ + 1)y
dy

✏

rstart = ⇧ ↵start t� , (26)
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along with the initial conditions for the remaining three ODEs

Hstart =
1

(1 � Ustart) ↵⌥
start

Wstart =
µ � (µ + 1) Ustart

2

⇤start = Ustart(1 � Ustart) . (27)

A solution is desired at position rwant, which corresponds to a self-similarity position

↵want =
rwant

⇧ t�
. (28)

If the solution is desired well ahead of the thermal front, rwant ⌃ rstart, then the physical solution is just that of the

cold material into which the disturbance propagates:

� = g0 r⌃

v = 0.0 E = 0.0 P = 0.0 T = 0.0 . (29)

If the solution is desired at a position between the leading edge of the thermal conduction front and the shock

front, rshock < rwant < rstart, form the following five auxiliary functions

⌅ =
W H1�a

⇤b ⇥0

g1 = � � (n + �+ �)U

g2 = U(
1
�

� U) + ⇤(2⌅ � �� �)

g3 = ⌅(µ(U � 1) + 2W ) + µ(
1
�

� 1) � nU � (n + �+ �)W

g4 = �2(1 + ⌅) , (30)

and integrate the following four ordinary differential equations

U ⌅ = g1 � (U � 1)(g2 � (U � 1)g1))
⇤ � (U � 1)2

H ⌅ =
W (g2 � (U � 1)g1)

⇤ � (U � 1)2

W ⌅ = g3 � (U ⌅ + W
H ⌅

H
)

⇤⌅ = ⇤ g4 , (31)
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from ln(↵start) to ln(max(↵shock, ↵want)). At the end of this integration one has values of the four variables Uwant,

Hwant, Wwant, and ⇤want.

If the solution is desired at a point between the shock front and near the origin, rsmall < rwant < rshock, first

integrate to the position of the shock using the equation (14). Then apply the standard shock jump conditions to form

a new set of initial conditions:

Ustart = 1 � ⇤want

1 � Uwant

Hstart = Hwant
(1 � Uwant)2

⇤want

Wstart =
⇤wantWwant � (1�Uwant)4��2

want
2(1�Uwant)

(1 � Uwant)2

⇤start = ⇤want . (32)

The ODEs in equation (32) are integrated again from ln(↵shock) to ln(↵small), where ↵small was chosen to be 1 ⇤ 10�6

in order to avoid the singularity at the origin. At the end of this second integration one has the values of the four

variables Uwant, Hwant, Wwant, and ⇤want.

Finally, for any point between the leading edge of the thermal front and near the origin, rsmall < rwant < rstart,

the solution in physical space is given by:

v = �
r
t

Uwant � = g0 r⌃ ↵⌥ Hwant

E =
(�r/t)2

⇤ � 1
⇤want P = (⇤ � 1) � E T =

(�r/t)2

�
⇤want . (33)

A fortran code to calculate the analytic solution is given in appendix B, and is based on the codes used in Kamm

(2000a).

3.4.2 Verification Analysis on 1D Uniform and Adaptive Grids

RAGE 20041126.030, 20041126.032, 20050331.02, 20050331.31, 20050331.41 and 20050818.0000 was used

to generate numerical solutions to the RMTV problem on the Linux cluster Lambda. The starting RAGE input deck

for this problem was the same one used by Kamm & Kirkpatrick (2004), and modified to make it more amenable

to automation and analysis on adaptive meshes (see Appendix A). Initial conditions (see Appendix B) were evolved

to 5.1251245293611⇤10�10 s and Grove's AMHCTOOLS (2005) was used to extract the solution data on the native

grid from the binary dump files. Extracting the solution data on the native mesh is important because if one requests

the simulation data from RAGE in either HDF 4 or SDSS formats, RAGE interpolates the native data onto a uniform

mesh. Avoiding an interpolation of the numerical solution right off the bat seems prudent for a proper verification

analysis.
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Solutions were generated on uniform grids with 100, 200, 400,and 800 cells. Solutions were also computed

on adaptive meshes with an effective resolution (if maximally refined everywhere) of 100, 200, 400, and 800 cells.

These four effective resolution grids correspond to four levels of adaptive mesh refinement. The 100 cell formed

the Level 1 adaptive grid, and the sizemat parameter was used to increase the potential maximal refinement level.

Other mesh refinement variables such as numfine, numlev mxcells and sizbnd were left at their default values.

RAGE core dumped when trying to run 1600 (or more) cells finer grid resolutions:

1600 1600 1 0 2.501650E-03 2.501650E-03 ...

initialize region

GMV cannot open file

Unable to open file

scloadx3d: unable to open file ‘‘’’ for reading

scloadx3d: No such file or directory

Segmentation fault (core dumped)

This is probably due to the crude manner in which the initial power-law density profile given by equation (20) was

implemented. Every zone was made a separate region. RAGE must have some limit on the number of regions allowed,

and we may have simply exceeded that limit. While this could be investigated further, it is far more preferable to find

a better way to implement the initial density profile. In either case, note the initial power-law density profile must be

cell averaged. For a zone with a left boundary rl, a right boundary rr the mass and volume of the zone is

M =
4�g0

3 + �

�
rr3+⌃ � rl3+⌃

⌫
V =

4�
3

�
rr3 � rl3

⌫
, (35)

so that the (constant) density within the zone is � = M/V .

Figure 20 shows solutions to the RMTV problem on uniform and adaptive grids. The wave structure is initiated

at x = 0.0 cm and propagates to the left. The top panel compares the analytical and numerical solutions for the density,

pressure, temperature and material speed at 5.1251245293611⇤10�10 s on a 200 cell uniform mesh. The analytic and

numerical solutions appear reasonable at this level of visual comparison, although there is a difference in the locations

of the thermal front's leading edge (green curve).

The middle and bottom panels of Figure 20 show four stills taken from a movie of the RMTV problem with 4

levels of refinement. Circles mark the locations of the adaptive grid points. The total number of grid points and the

time is given above each still in the title line. The first frame from the movie, left plot of the middle panel, shows

RAGE's gallant attempt to refine the poor manner in which the initial power-law density profile was implemented.

Note the general trend of a decreasing number of grid points as the simulation proceeds. As in the Mader problem

(see Figure 15), there is a clumping of the grid points behind the shock which is particularly visible in the pressure

(purple curves). There is a dense grouping of grid points followed by a less dense grouping followed by another dense

grouping. Such clumping persists even until the ending time (final movie frame). It is possible in this case that the

grid clumping is an artificial feature caused by the manner in which the initial power-law density profile was put into

RAGE.

Figure 21 shows the absolute value of the pointwise L1,rel error for the density, temperature, and material speed

on uniform and adaptive grids. The large errors near the left boundary are caused by the singularity at the origin.
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Figure 20. - The top plot shows analytical (solid) and numerical (dashed) solutions for the mass density, velocity,

pressure, and temperature at 5.1251245293611⇤10�10 s on a 200 cell uniform mesh. The middle and bottom panels

show stills from a movie of the RMTV problem with 4 levels of refinement, with circles marking the locations of the

adaptive grid points.
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Figure 21. - Absolute value of the point-wise L1,rel error for the density, pressure, and speed on uniform and

adaptive grids at 5.1251245293611⇤10�10 s.
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There are also insistent, but expected, errors near the r=0.45 cm position of the shock front and the r=0.9 cm position

of the heat front. Of more concern is the behavior of the numerical solution on both uniform and adaptive grids.

First consider the region between the origin and shock at 0.45 cm. On uniform grids the convergence appears to be

saturating by 800 cells. On adaptive grids with the default AMR seetings the solution gets worse with increasing

resolution --- the 800 cell solution has larger errors than the 400 cell solution which in turn has larger errors than the

200 cell solution. Next consider the region between the shock front at 0.45 cm and the thermal front at 0.90 cm.

On uniform grids the errors in the density solution saturate, but the temperature and velocity errors increase with

increasing resolution. On adaptive grids, the errors continue to get smaller with increasing resolution.
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Figure 22. - Global rates of convergence for the mass density, pressure, and material velocity. The black lines show

slopes of 0, 1, and 2.

Figure 22 shows the global error norms on uniform grids computed from equations (7). The rate of convergence

on coarse grids is generally linear, q ⌥ 1, for the density and material velocity but degrades at finer grids to sub-linear,
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q ⇧ 0.4. The convergence rate of the temperature is worse on coarse grids and gets marginally better, q ⌥ 0.25 on

finer grids. A few runs with a smaller maximum allowed time-step did not significantly change the convergence rates

at the finest grid resolutions. The reason for this convergence behavior is the persistent errors at the origin, shock

front, and thermal front, along with the undesirable conduct of the errors with increasing resolution between the shock

front and the thermal front. Table 4 details the convergence rate properties of the L1,abs norm.

Table 4

Global Convergence coefficients for the Reinicke Meyer-ter-Vehn Problem1

� v P T

# of cells q A q A q A q A

200 0.65 13.1 1.04 1.5E+07 0.76 8.5E+17 0.00 49.6

400 0.31 2.25 0.50 8.9E+07 0.42 1.4E+17 0.29 195

800 0.47 5.50 0.56 1.3E+08 0.57 3.4E+17 0.23 166

1 For the L1,abs norm on uniform grids with RAGE 20050818.0000

The ratio of the CPU resources consumed by the uniform and adaptive grid calculations are shown in Figure 23

as a function of refinement level. There is almost no improvement in computational efficiency using adaptive grids

because initially there are more cells than 'specified' by sizmat and the domain size. For a domain size of 1.0 cm

and sizmat set to 0.00125 there should be, at maximum, 800 grid points. Yet Figure 20 shows a maximum of 1429

cells at t=0.0 s. Why this is occurring should be addressed in future efforts.

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

U
n
if
o

rm
 g

ri
d

 c
p
u

 /
 A

d
a
p

ti
v
e
 m

e
s
h
 c

p
u

Levels of refinement

RMTV Problem

Figure 23. - CPU usage on uniform and adaptive grids for the one-dimensional RMTV problem.
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3.5 The Noh Problem

The Noh problem (Noh 1987) is a standard verification problem for hydrocodes. A gamma-law gas is initialized

with a uniform, radially inward speed. A shock forms at the origin and propagates outward as the gas stagnates. This

problem tests a code's ability to transform kinetic energy into internal energy, and the ability to follow supersonic

flows. The analytical solution is easy to calculate, and the convergence of the hydrocode solution can be directly

determined.

Figure 24. - Noh's problem in 3D - spherical shock

3.5.1 Analytical Solution

Given the domain characterized at t=0 by a constant density �0, material inflow speed, v0, and adiabatic index ⇤

�0 = 1.0 v0 = �1.0 ⇤0 = 5/3 , (36)

the solution at time t=0.3 is desired for any given value of rwant. The shock front speed and location are

vs =
1
2

(⇤ � 1) |v0| rs = vs t . (37)

If the solution is desired ahead of the blast wave, rwant ⇧ r2, then

� = �0

⌥
1 � vs t

rwant

�n�1

v = v0 E = 0 P = 0 , (38)

where n = 3 is for a spherical shock, n = 2 for a cylindrical shock, and n = 1 for a planar shock. If the solution is

between the origin and the shock front, rwant > r2, then

� = �0

⌥
⇤ + 1
⇤ � 1

�n

v = 0 E =
1
2

= v2
0 P = (⇤ � 1)�E . (39)

For the canonical case of ⇤ = 5/3 these equations yield the well-known result that a strong planar shock produces a

maximum density contrast of 4 for a planar shock, 16 for a cylindrical, and 64 for a spherical shock.

3.5.2 Verification Analysis on 1D Uniform and Adaptive Grids

RAGE 20041126.030, 20041126.032, 20050331.02, 20050331.31, 20050331.41 and 20050818.0000 was used

to generate numerical solutions to the 1D Noh problem on the Linux cluster Lambda. An inflow boundary condition
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is imposed to preserve the inward flow indicated by equation (36). The starting RAGE input deck for this problem

was the same one used by Kamm & Kirkpatrick (2004), and modified to make it more amenable to automation and

analysis on adaptive meshes (see Appendix A). Grove's AMHCTOOLS (2005) was used to extract the solution data

on the native grid from the binary dump files.

Solutions were generated on 1D uniform grids with 100, 200, 400, 800, 1600, 3200, and 6400 cells at t=0.3 s.

Solutions were also computed on 1D adaptive meshes with an effective resolution (if maximally refined everywhere)

of 100, 200, 400, 800, 1600, 3200, 6400 cells. These seven effective resolution grids correspond to seven levels of

adaptive mesh refinement. The 100 cell formed the Level 1 adaptive grid, and the sizemat parameter was used

to increase the potential maximal refinement level. Other mesh refinement variables such as numfine, numlev

mxcells and sizbnd were left at their default values.

Figure 25 shows solutions to the 1D Noh problem on uniform and adaptive grids. The top panel compares the

analytical and numerical solutions for the density, pressure, temperature and material speed on a 800 cell uniform

grid. RAGE, like most other hydrodynamics codes, produces anomalous `wall-heating' near the origin. This heating

causes premature stagnation, with densities lower than predicted in the centermost cells. In this RAGE calculation,

the central zones has a stagnation density above 75 g/cc. Further out, matter stagnates at densities of 58-62 g/cc. The

extent to which the anomalous heating occurs depends on the nature of the discontinuity at the origin, so the wall

heating can be considerably less than this (sometimes completely negligible) in realistic problems. If the converging

flow does not produce a 1-zone discontinuity in velocity at the origin (as occurs in the setup of the Noh test problem),

RAGE's performance might be adequate.

The middle and bottom panels of Figure 25 show four stills taken from a movie of the 1D Noh problem with

4 levels of refinement when the default AMR parameters are used. Circles mark the locations of the adaptive grid

points. The total number of grid points and the time is given above each still in the title line. Most disconcerting is

the poor resolution of the shock front with spikes in front of the shock wave and just behind the shock wave. There is

also evidence of grid clumping ahead of the shock front; a dense grouping of grid points followed by a gap followed

by another dense grouping. Such clumping persists even until the ending time.

Figure 26 plots the L1,rel error for the density, pressure, and material speed for various grid resolutions. Note the

density plots in the top panel have a different x-axis scale.The large errors from the anomalous heating at the origin

is evident in both the uniform and adaptive grid simulations. The large errors near the right boundary is present in

the uniform and adaptive grid model and is probably due to how the inflow boundary condition is implemented in

RAGE. It is encouraging, however, that between the origin and the chock from that both uniform and adaptive grid

calculations show a steady decrease in the size of the errors as the spatial resolution is increased.

Figure 27 shows the global error norms on uniform grids computed from equations (7). The rate of convergence of

the density on coarse grids is generally sub-linear, q ⇧ 0.5, and doesn't significantly improve or degrade as resolution

increases. The pressure and material speed have convergence rates that are nearly linear at all grid resolutions. A few

runs with a smaller maximum allowed time-step did not significantly change the convergence rates at the finest grid

resolutions. The reason for this convergence behavior is due to wall heating and errors in the density far upstream

from the shock front. Table 5 details the convergence rate properties of the L1,abs norm.
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Figure 25. - The top plot shows analytical (solid) and numerical (dashed) solutions for the mass density, pressure

and material speed at 0.3 s on a 800 cell uniform grid. The middle and bottom panels show stills from a movie of the

1D Noh problem with 4 levels of refinement, with circles marking the locations of the adaptive grid points.
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Figure 26. - Absolute value of the point-wise L1,rel error for the density, pressure, and material speed on uniform

and adaptive grids at 0.3 s.



Chapter 3.5 - Noh Page 43 LA-UR-05-6865

.0001 .001 .01
.001

.01

.1

P
re

s
s
u
re

 E
rr

o
r

Radial grid spacing (cm)

L1
abs

L1
rel

L2
abs

L2
rel

m=0

m=1

m=2

.0001 .001 .01

.0001

.001

.01

.1

S
p
e
e
d

 E
rr

o
r

Radial grid spacing (cm)

L1
abs

L1
rel

L2
abs

L2
rel

m=0

m=1

m=2

.0001 .001 .01
.001

.01

.1

1

D
e
n

s
it
y
 E

rr
o
r

Radial grid spacing (cm)

L1
abs

L1
rel

L2
abs

L2
rel

m=0

m=1

m=2

Figure 27. - Global rates of convergence for the mass density, pressure, and material velocity. The black lines show

slopes of 0, 1, and 2.

Table 5

Global Convergence coefficients for the Noh Problem1

� v P

# of cells q A q A q A

200 0.47 11.2 0.79 0.19 0.70 6.64

400 0.51 13.7 0.92 0.37 0.88 17.4

800 0.47 10.9 0.94 0.41 0.95 25.0

1600 0.38 6.17 0.96 0.48 1.03 43.3

3200 0.21 1.77 0.99 0.62 0.92 20.2

6400 0.11 0.75 1.00 0.68 1.00 39.6

1 For the L1,abs norm on uniform grids with RAGE 20050818.0000
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The ratio of the CPU resources consumed by the uniform and adaptive grid calculations are shown in Figure 28

as a function of refinement level. There is almost no improvement in computational efficiency using adaptive grids

because the entire domain is refined within the first few times steps. This is also seen in the 2D Noh problem discussed

in the next section. It appears the radially inwards velocity field causes the refinement.
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Figure 28. - CPU usage on uniform and adaptive grids for the one-dimensional Noh problem.

3.5.3 Verification Analysis on 2D Uniform and Adaptive Grids

Most modern, complex simulations are done in two and three dimensions. It is important to consider how well

hydrocodes duplicate the physics in situations where motions and gradients are not grid-aligned. The 2D spherically

symmetric Noh problem is also good for testing the isotropy of successful code solutions. The ideal geometry for

simulating the spherically symmetric Noh problem in two dimensions is the (r,z) cylindrical coordinate system, with

the axis being one boundary of the problem domain, and the equatorial plane a reflective boundary.

All the 2D simulations were performed with either RAGE 20041126.002, 20041126.032 or 20041126.042. They

were mainly run on the QSC HP/Compaq ES245 Alpha cluster, on varying number of processors. Some of the smaller

problems were executed on desktop Apple Macintosh G4's under the Absoft Compiler, and a few sample runs on the

Linux cluster Flash. No significant differences were found for these problems among these versions and computers.

For these 2D simulations, the HDF-4 output routines were used to access the data. In the course of ensuring that the

files generated were true 64-bit, one of us (Gisler) consulted with Dale Ranta of SAIC, who discovered a bug in the

production of 64-bit scientific data sets by RAGE due to a bad index. This was corrected and incorporated into the

current versions of the code. To produce 64-bit scientific data sets one must set hdf 64bit sds = .true.

All the uniform grid simulations were done of a domain [0,1.5] ⇤ [0,1.5] in r-z coordinates. The baseline

simulation, henceforth denoted c1, was computed on a uniform grid of cell size ⇥z = ⇥r = 0.01, so the grid is

150⇤150 cells. Initial conditions and inflow boundary conditions were prescribed as in the 1D Noh problem. The

solutions are evaluated at time t=0.6, at which time the shock has reached r=0.2. The uniform grid convergence study



Chapter 3.5 - Noh Page 45 LA-UR-05-6865

involved simulations c2, c4, and c8, with cell sizes ⇥z = ⇥r = 0.005, 0.0025, and 0.00125 respectively, decreasing

by a factor two each time. The finest-grid simulation therefore had 1200⇤1200 cells for a total of 1,440,000 cells.

RAGE produced output files in 64-bit scientific data format on a 600⇤600 pixel frame. Analytical results were

produced on the same sized frame. This frame size allows for easy visual inspection, and having a single output

frame size for all resolutions eases the verification analysis. This output grid size is the same as the c4 computational

grid, and differs from the other computational grids by factors of 2 or 4 in one dimension, so potential problems from

aliasing should be a moot issue.

Figure 29 shows the numerical solution at the simulation end time (t=0.6) for the four cases in the uniform-grid

convergence study, c1, c2, c4, and c8 arranged clockwise starting from upper left. The images are arranged so that they

share a common center for easy comparison of features, but the cylindrical axis is always vertical and the radial axis

horizontal. Starting at the top left in Figure 29, notice the two dark lines adjacent to and parallel to the horizontal axis

within the shock region and a single dark line similarly adjacent to the vertical axis. These grid aligned features are

anomalous artifacts of RAGE's hydrodynamics. There is also a broad valley (lighter region) at 45⇤. Moving to the top

right, there is a distinct sharpening of the shock interface, a narrowing of the 45⇤ valley feature and of the grid-aligned

stripes. At bottom right, the grid-aligned stripes narrow further with increased resolution, but are still noticeable, as

is the valley. In the finest resolution calculation at bottom left, the pattern is distinctly that of a herringbone, with a

rather broad 45 degree spine (the valley seen at lower resolution has become a hump) and narrow grid-aligned ribs.

These density plots give impression that the asymmetry due to the numerics is improving with increased resolution,

but this is misleading, as will be seen below.

Figure 30 shows the L1,abs norm computed from a generalization of equation 7. If RAGE's solution were a

perfect match to the analytical solution, the color would be uniformly dark blue. The same features pointed out in the

RAGE density plots are apparent here, but it is also clear that the accuracy of the simulation dramatically improves

as the resolution is increased. Not only does the shock thickness decrease, but the overall amplitude of the variations

within the shocked region decrease as well. It is also possible to discern in these difference frames the influence of

the constant-inflow boundary condition as a faintly visible front marching inward from the outer r and z boundaries,

now having reached about 1/3 of the way across the frame. A proper detailed analysis will exclude that region from

consideration.

Because conditions in the Noh problem differ so drastically in the regions inside and outside the shock, and also

in order to quantify the asymmetry so apparent in Figures 29 and 30, we have chosen to perform convergence and

symmetry analyses separately in annular bands centered on the origin. These bands are illustrated in Figure 31, in

which we also display a magnified (and flipped) version of the high-resolution plot from the lower-left-hand corner of

Figure 29. The bands, numbered 0 through 9 from the innermost radial band outward, are chosen in such a way as to

bracket the shock (in band 4) and to have roughly similar numbers of scientific data set cells (i.e., not computational

cells) per band, except for the outermost band 9, which we discard from the analysis because of the influence of

the boundary. Also shown in Figure 31 are the band-averaged L1 norms as a function of cell size, illustrating that

convergence outside the shock is second-order, while convergence within and at the shock is first-order.

The band L1,abs norms are tabulated in Table 6 for the four runs considered here, as well as the convergence

properties in each band. For judging the L1,abs norms, recall that the analytical value of the density within the shock
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Figure 29. - Density plots of the spherical-compression Noh problem in 2D at t=0.6 s at four successively finer

refinement levels, going clockwise from top left. The plots are linear in density and autoscaled. In the analytical

solution the density has a value of 64 units inside the shocked region, declining sharply to 1 unit outside the shock.

Figure 30. - The L1,abs norm for the density from the same 4 solutions of the Noh problem shown in Figure 29.
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(bands 0 through 4) is 64, while the value outside is very nearly 1. So the solution is highly accurate (and converging

rapidly) outside the shock, while within the shock the accuracy is a few percent and converging slowly.

Table 6

Accuracy and convergence for the Noh problem on 2D uniform grids

Band averaged L1 norms Pointwise convergence indices

band c1 c2 c4 c8 q1 q2 q3

dx 0.01 0.005 0.0025 0.00125

0 3.77954 2.52065 1.90834 1.47468 0.58 0.40 0.37

1 4.04392 2.70827 1.9326 2.54857 0.58 0.49 -0.40

2 4.08581 2.62225 2.68611 3.00168 0.64 -0.03 -0.16

3 4.33881 2.76868 3.58724 3.64777 0.65 -0.37 -0.02

4 15.2744 8.54892 6.26586 3.56781 0.84 0.44 0.81

5 0.54414 1.65e-02 6.31e-03 9.06e-04 5.04 1.39 2.80

6 0.03284 1.20e-02 4.65e-03 5.86e-04 1.46 1.36 2.99

7 2.74e-02 1.04e-02 4.18e-03 4.21e-04 1.40 1.32 3.31

8 2.35e-02 9.21e-03 3.82e-03 2.97e-04 1.35 1.27 3.68

Table 7

Asymmetry in the 2D Noh problem on uniform grids

rms deviation of band means

band c1 c2 c4 c8

dx 0.01 0.005 0.0025 0.00125

0 1.74058 1.78574 1.80998 1.8383

1 1.7499 1.80254 1.8445 1.8555

2 1.76745 1.81975 1.84371 1.86319

3 1.76173 1.81585 1.82221 1.8412

4 1.2892 1.13534 1.06157 0.986527

5 0.409548 0.394162 0.394108 0.394155

6 0.350507 0.350276 0.350265 0.350304

7 0.318307 0.318171 0.31818 0.318229

8 0.289846 0.289774 0.289796 0.289849
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Figure 31. - The right image shows analysis bands 0 through 8 and a magnified density plot from the highest resolution

run c8. The left plot shows the band-averaged L1,abs norms with the lines color-keyed to the bands plotted at right.

Also shown are solid black lines indicating first and second-order convergence.

Figure 32. - The asymmetry within each band in the Noh problem, defined as the root- mean-square deviation from

the band mean, is plotted as a function of cell size. Only in the shock-straddling band 4 is this asymmetry found to

decrease with increasing resolution, and this is solely due to the thinning of the steep shock transition within that

band. The band definitions and color coding are the same as for Figure 31.
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We define the asymmetry within a band as the root-mean-square deviation from the band mean. Since the bands

are narrow, the deviations are mainly due to the herringbone pattern, except where a band straddles the shock (band 4),

where the deviations are dominated by the steep shock transition. The asymmetry within the shock (the herringbone

pattern, at high-resolution) is found not to diminish with increasing resolution, as shown in Figure 32 and Table 7.

While the character of the asymmetry changes from the broad valley and thin stripes seen in the lowest resolution

run in Figure 32 to the fine herringbone seen in the highest resolution run, there is no substantial improvement in

symmetry as resolution increases. Within the shock, the asymmetry becomes a little worse with increasing resolution,

as shown by the numbers in Table 7. Again recall that the solution within the shock is �=64, so the rms deviation

from symmetry is 2-3%. The asymmetry numbers are less than or comparable to the band-averaged L1 norms shown

in Table 6. Assuming these errors add in quadrature, we have an overall accuracy of order 5% within the shock in the

Noh problem, not substantially improving with resolution.

The convergence analysis that Kamm and Kirkpatrick (2004) undertook did not include a study of the adaptive

mesh refinement. The analytical procedure for deriving convergence assumes a uniform grid, and so is not (strictly

speaking) valid for an adaptive grid. The fundamental assertion of AMR, however, is that if refinement occurs

only where it is needed, then convergence on an adaptive grid should be as good as convergence on a uniform grid.

Implementations of adaptive grids of course depend on the criteria for deciding where to refine and de-refine (perhaps

more important for considerations of efficiency), and the procedures for assigning quantities to the new cells created

in refinement or averaging quantities from cells are de-refined.

A series of adaptive grid simulations a2, a4, and a8 were run that had minimum cell sizes the same as the

corresponding uniform cell simulation. All the adaptive grid simulations started with the baseline c1 150⇤150 cell

grid. Table 8 details the properties of all the runs.

Table 8

Adaptive and Uniform mesh simulations in 2D for the Noh problem

Type Run dr=dz sum cell sum cpuhr

Baseline c1 0.01 22,500 0.102

Uniform grid c2 0.005 90,000 2.48

c4 0.0025 360,000 6.71

c8 0.00125 1,440,000 68.7

AMR grid (min) (at  end)

a2 0.005 112,208 17.3

a4 0.0025 470,012 53.9

a8 0.00125 1,887,408 196

Table 8 shows the high cost of running an adaptive grid on the Noh problem in 2D. The cell counts are considerably
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larger than the cell counts for the corresponding uniform grid simulations, indicating that the AMR machinery is

refining the grid essentially everywhere in the problem domain. The reported sum cell count includes the active

top-level cells and all the inactive (larger) parent cells. In fact this refinement occurs at the first cycle (cycle zero)

of the problem. This is puzzling because there are no gradients in any physical property at the first cycle. Density,

pressure, and temperature are all uniform throughout the grid. Speed is also uniform, directed radially inward, but

the r and z velocity components separately vary from cell to cell to keep the radial velocity uniform. Mike Clover

of SAIC informed one of us (Gisler) that the refinement that occurs at cycle zero does indeed depend on the velocity

components separately. We shall see below, however, that the use of AMR in the Noh problem leads to very deleterious

consequences regardless of (or in spite of) the initial refinement.

Figure 33 shows the difference plots (L1 norm of density, analogous to Figure 30) for the baseline run c1 and the

three adaptive mesh runs a2, a4, and a8. To the eye, there is comparable improvement going from c1 to a2 as there is

in going from c1 to c2 in Figure 30. But going on to a4 the grid-aligned features become distinctly more prominent,

and they also appear farther from the axes than the comparable features in c4 of Figure 30. The finest resolution AMR

run, a8, has a surprising and catastrophic anomaly on the axis, which turns out to be a low density bubble straddling

the shock. This is probably related to the carbuncle phenomenon that is known to affect some Godunov schemes

(Quirk 1994). As pointed out in the discussion accompanying Table 8, in these adaptive grid runs, the RAGE code

is adapting everywhere down to the finest allowed cell size on the initial time step, which accounts for the high cell

counts and long run times of adaptive mesh runs in the Noh problem. However, if the code kept the finest allowed cell

size everywhere, then the results should be identical to the corresponding uniform grid runs. Since they are not, the

problem must arise during de-refinement, and indeed we find that the on-axis bubble is seeded at one of the de-refined

regions.

Both the herringbone asymmetry problem (in either uniform or adaptive solutions) and the carbuncle anomaly

are now being examined by the Code Project A team to identify and eliminate the bugs that are causing these.

Figure 34 shows the convergence plot for the adaptive mesh runs, analogous to Figure 31 for the uniform mesh

runs. Clearly (as is already evident to the eye from Figure 33) the adaptive mesh runs are not converging.

We also conducted a study of the effects of changing the input variable numrho on the questions of accuracy,

asymmetry and convergence. This variable determines the method of interpolation used in the hydrodynamics. The

interest in this arose because complex multi-material problems that are run using this code exhibit strikingly different

behaviors for different values of numrho, and it is therefore of interest to perform verification and validation exercises

to determine which value retains the most fidelity to the physics. We find that changing numrho over all its possible

values has essentially no effect either on accuracy or on asymmetry in the Noh problem, and the convergence behavior

is identical for numrho=1 and numrho=6. The default value of numrho in the code is 1, which invokes a standard

minmod interpolation scheme. The deprecated numrho=0 is a simple donor-cell method; numrho=2 and numrho=3

are the extended and iterated minmod schemes respectively; numrho=4 is the standard van Leer (van Leer, 1974)

interpolation scheme, and numrho=6 is a modified van Leer method with a different weight parameter. There is no

numrho=5 option. In these runs we used hydro option=1, which makes the interpolation consistent between the

derivative finders and the Riemann solver.
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Figure 33. - Plots of the L1 norm for density in the Noh problem from the baseline run c1 and the three adaptive mesh

runs a2, a4, and a8 Each ai run has the same smallest cell size as the uniform cell size in the ci run with the same

subscript, giving the same equivalent resolution.

Figure 34. - Left panel is a convergence plot for the adaptive mesh runs, showing L1,abs norms averaged in the bands

at top right. Right panel shows the density the high-resolution run a8, where the carbuncle on axis is clearly seen.

Band definitions and color coding are the same as for Figure 31.
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Following the circulation of a draft of this report, the code team worked on addressing the adaptive grid refinement

issues encountered in the Noh problem.

We are pleased that the most recent versions of RAGE provide dramatic improvement in both convergence and

symmetry for the Noh problem, and somewhat better run times. Figure 35 shows the L1 norm for density with

alpha version 20050818.010, the latest official release as of this report. The carbuncle so obvious in a8 of Figure

33 is clearly absent, although a magnifying glass would show a much smaller version of it in the same position. A

convergence plot for these new runs is shown in Figure 36, which is to be compared with Figure 34. The behavior at

small cell sizes is much improved, and linear convergence is now obtained for the innermost bands within the shocked

region. There is still some divergence outside the shocked region, but the absence of the carbuncle has a noticeable

effect on improving the overall divergence.

The improvements to the code in going from 20041126.042 to 20050818.010 involve improvement of the hy-

drodynamics throughout, and 'closer' examination of the conditions under which refinement and derefinement occur.

Mike Gittings made a further improvement to the refinement criteria, introducing a new input variable rho eps

which can be used to relax the refinement, specifically addressing the Noh problem. The convergence plot for his

release, version 20050809.400, is shown in Figure 36, showing a considerable improvement in the convergence at all

cell sizes. The main culprit in the objectionable behavior we found with earlier versions of the code has to do with

when and how refinement and derefinement occur. The cell counts in Gittings version are 91%, 88%, and 87% the

numbers quoted in Table 8, for runs a2, a4, and a8 respectively, and the run times are correspondingly smaller as well.

Thus there is still considerable room for further improvement in comparing the adaptive grid performance numbers

to the uniform grid performance.
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Figure 35. - Plots of the L1 norm for density in the Noh problem using RAGE 20050818.010 from the baseline run c1

and the three adaptive mesh runs a2, a4, and a8 Each ai run has the same smallest cell size as the uniform cell size

in the ci run with the same subscript, giving the same equivalent resolution.

Figure 36. - Left plot shows the L1 norms using RAGE 20050818.010, while the right plot shows the same for the

unofficial Gittings RAGE 20050809.400. The bands are defined as in Figure 34.
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3.6 The Sedov Problem

A finite amount of energy is released at the origin at an initial time. The problem of finding self-similar, one-

dimensional solutions for compressible hydrodynamics was considered by Sedov (1959), Taylor (1950), and von

Neumann (1947). Sedov provided the most general closed-form solution, which we employ in the forms considered

by Kamm (2000b).

There was perhaps something new to add to this venerable problem. When a known amount of energy is deposited,

two energy integrals must be done. One or both of these integrals usually have a singularity at the lower limit of

integration. Without specifically addressing the singularity, quadrature routines complain bitterly about inaccurate

answers or too many iterations (e.g., Kamm 2000b) The research code provided for the Tri-Lab test suite was no

exception. The trick is to note that that these singularities are integrable power-law singularities; hence removable.

Doing so makes quadrature evaluations accurate, repeatable, and efficient rapid. John Bolstad at LLNL apparently

implemented this improvement in his/their Sedov code (Kamm, private communication), but it doesn't seem to have

been implemented in any LANL code. If a goal is to have a `blessed' exact solution code, then the code in Appendix

B may be starting point for including this more robust numerical treatment.

Figure 37. - The stability of Taylor-Sedov blast waves in low-density gases was investigated at the Trident laser

facility. Stable and unstable propagation (with respect to the adiabatic index) was observed in experiments. The

image shows a multiple-frame shadowgraph of a blast wave in 0.5 Torr of xenon with 66 J at 30-ns intervals.

3.6.1 Analytical Solution

Given the spherically symmetric (n = 3) domain characterized by a constant density �0, speed, v0, pressure P0,

specific internal energy E0, and adiabatic index ⇤0, one deposits an energy Eblast at time t=0 s. For the Tri-Lab test

problem considered here these values are

�0 = 1.0 v0 = 0.0 P0 = 0.0

E0 = 0.0 ⇤0 = 1.4 Eblast = 0.851072 (40)

The physical solution at time t=1 s is desired.
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One begins the solution for the standard (a nonzero solution extends from the shock to the origin, at which the

pressure is finite), constant density (⌘ = 0) case by forming the exponents

a0 =
2

n � 2
a2 =

1 � ⇤
2(⇤ � 1) + n

a1 =
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and the frequent combinations
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The dimensionless shock speed v0 and the dimensionless post-shock state vs form the limits of integration
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The dimensionless energy of the shock is then given by

� = (n � 1)�
⌥

J1 +
2J2

⇤ � 1

�
Edim =

Eblast

�
(46)

The shock position r2, shock speed us, and post-shock values of the material speed u2, density �2, pressure P2,

specific energy E2, and the non-relativistic sound speed c2 follow as
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Next, we locate the similarity value V ⇥ that correlates to rwant by seeking the value of zero of the function f(V ⇥)

f(V ⇥) = r2
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With this value of V ⇥ compute the four Sedov functions:
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If the solution is desired ahead of the blast wave, rwant ⌃ r2, then the physical solution is just that of the ambient

material into which the disturbance propagates:

� = �0 v = v0 E = E0 P = P0 c = c0 , (50)

otherwise if the solution is between the origin and the shock front, 0 < rwant < r2, the physical solution is

� = �2g v = u2f P = P2h E =
P

�(⇤ � 1)
c =

⇡
P
�⇤

(51)
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3.6.2 Verification Analysis on 1D Uniform and Adaptive Grids

RAGE 20041126.030, 20041126.032, 20050331.02, 20050331.31, 20050331.41 and 20050818.0000 was used to

generate numerical solutions to the 1D Sedov problem on the Linux cluster Lambda. The starting RAGE input deck

for this problem was the same one used by Kamm & Kirkpatrick (2004), and modified to make it more amenable to

automation and analysis on adaptive meshes (see Appendix A). Grove's AMHCTOOLS (2005) was used to extract

the solution data on the native grid from the binary dump files.

Solutions were generated on 1D uniform grids with 120, 240, 480, 960, 1920, and 3840 cells at t=1.0 s. Solutions

were also computed on 1D adaptive meshes with an effective resolution (if maximally refined everywhere) of 120,

240, 480, 960, 1920, and 3840. These six effective resolutions correspond to six levels of grid refinement. The 120

cell grid formed the Level 1 adaptive grid, and the sizemat parameter was used to increase the potential maximal

refinement level. Other mesh refinement variables such as numfine, numlev mxcells and sizbnd were left at

their default values.

Figure 38 shows solutions to the 1D Sedov problem on uniform and adaptive grids. The top panel compares the

analytical and numerical solutions for the density, pressure, temperature and material speed on a 480 cell uniform grid.

The only obvious visual disagreement appears to be that the peak pressure generated by the shock is over-estimated

by the numerical solution. The middle and bottom panels of Figure 38 show four stills taken from a movie of the

Sedov problem with 4 levels of refinement. Circles mark the locations of the adaptive grid points. The total number

of grid points and the time is given above each still in the title line. As in several other of the test problems which use

the default AMR settings, there is a clumping of the grid points behind the shock which is particularly visible in the

material speed (red curves). There is a dense grouping of grid points followed by a less dense grouping followed by

another dense grouping. Why grid clumping occurs should be investigated in a future report.

Figure 39 plots the L1rel error for the density, pressure, and material speed for various grid resolutions. Note the

large, persistent errors near the left boundary. These are probably caused by deposition of the initial energy over a

finite number of zones in a convergent geometry. There are also oscillatory errors as one approaches the r=1.0 cm

position of the shock front. Between the origin and the shock front, the errors generally get smaller as the resolution

is increased.

Figure 40 shows the global error norms on uniform grids computed from equations (7). The rate of convergence

for all quantities on coarse grids is generally linear, q ⌥ 1.0, and doesn't significantly improve or degrade as resolution

increases. Runs with a smaller maximum allowed time-step did not significantly change the convergence rates at

the finest grid resolutions. Reasons for not having better than linear convergence behavior is probably due to the

persistent errors near the origin and the first-order behavior of hydrocodes like rage near shock fronts. Table 9 details

the convergence rate properties of the L1abs norm on uniform grids.

The ratio of the CPU resources consumed by the uniform and adaptive grid calculations are shown in Figure 41

as a function of refinement level. The improvement in computational efficiency is about a factor ten at four levels

of mesh refinement, and increasing. This reduction in CPU resources by using adaptive grids is accompanied by

a reduction in error that is no worse than the errors incurred by using a uniform grid. For the Sedov problem,

convergence on an adaptive grid is as good (but much less expensive) as convergence on a uniform grid, fulfilling the

fundamental assertion of AMR.
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Figure 38. - The top plot shows analytical (solid) and numerical (dashed) solutions for the mass density, material

speed, pressure, and temperature at 1.0 s on a 200 cell uniform mesh. The middle and bottom panels show stills from

a movie of the Sedov problem with 4 levels of refinement, with circles marking the locations of the adaptive grid

points.
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Figure 39. - Absolute value of the point-wise L1,rel error for the density, pressure, and speed on uniform and

adaptive grids at 1.0 s.
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Figure 40. - Global rates of convergence for the mass density, pressure, and material velocity. The black lines

show slopes of 0, 1, and 2.

Table 9

Global Convergence coefficients for the Sedov Problem1

� v P

# of cells q A q A q A

240 0.33 0.41 0.74 0.25 0.29 7.4E-3

480 0.94 14.3 1.13 2.50 0.85 0.18

960 1.46 372.3 1.55 34.9 1.13 1.08

1920 0.91 8.35 0.82 0.25 0.93 0.28

3840 0.93 10.1 0.77 0.15 0.92 0.25

1 For the L1abs norm on uniform grids with RAGE 20050818.0000
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Figure 41. - CPU usage on uniform and adaptive grids for the one-dimensional Sedov problem.

3.6.3 Verification Analysis on 2D Uniform and Adaptive Grids

Identical notation and resolutions is used for the 2D Sedov runs as for the 2D Noh runs described §3.5.3. The

Sedov problem domain is [0,1.5]⇤[0,1.5] in r-z coordinates. The baseline simulation, denoted c1, is computed on

a uniform grid of cell size ⇥z = ⇥r = 0.01, so the full grid is 150⇤ 150 cells. A cylinder at the origin of radius

and half-height 0.02 (four cells at the lowest resolution) is initialized with a specific internal energy of 16931.53947

erg/gm, giving a total initial energy of 0.851072 erg, per equation (40).

Figure 42 shows density contours of runs c1, c2, c4, and c8, with the axis of symmetry always vertical. The

most noticeable feature of this plot is the narrowing of the shock as the resolution increases. In contrast to the Noh

problem, there are no striking asymmetries in the Sedov problem. The L1,abd norms are shown in Figure 43. It

easy to spot an axial problem that arises for the two highest resolution cases (which may again be a manifestation

of the carbuncle phenomenon), and a careful eye can spot asymmetric features at the lower resolutions as well.

Quantitative analysis shows roughly equal asymmetries at all resolutions, though (as in the 2D Noh problem) they

differ in character. Nevertheless, it is clear that asymmetries in the 2D Sedov problem are considerably less concerning

than in the 2D Noh problem. This is a natural consequence of the kinematics: expansions smooth out asymmetries

while compressions exacerbate them.

Figure 44 divides the problem domain into annular bands that have similar numbers of cells and straddle the

shock (see Figure 42). Because not much of interest happens outside the shock, we place band 7 to straddle the

shock, and we allow the innermost band, band 0 to be much larger than the other bands. Once again, we discard the

outermost band 9 due to boundary effects. The convergence in the Sedov problem is at best first order (except for

band 8 which overlaps the leading edge of the shock at low resolution). The shock band itself, band 7, is very closely

first order in convergence over all pairs of resolutions, but for inner bands the convergence seems to flatten out at

high resolutions, as if no more can be achieved inside with this hydrodynamics. The accuracy is appears quite good,

however; the peak value of density at the shock is 5.6.
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Figure 42. - Density contours from four numerical solutions on uniform grids to the standard Sedov problem at t=1.0

at successively finer refinement levels, going clockwise from top left.

Figure 43. - Plots of the L1 norm of the density from the same four solutions of the Sedov problem shown in Figure

42.
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The band-averaged L1 norms themselves are tabulated in Table 10, along with the pairwise convergence indices

computed according to equation (7). In Figure 45 we plot the band-wise asymmetry as a function of cell-size, and

the corresponding numbers are listed in Table 11. In both accuracy and symmetry, the 2D Sedov problem fares much

better than the 2D Noh. But clearly, in neither case does symmetry improve with increasing resolution.

Table 10

Accuracy and convergence for the Sedov problem on 2D uniform grids

Band averaged L1 norms Pointwise convergence indices

band c1 c2 c4 c8 q1 q2 q3

dx 0.01 0.005 0.0025 0.00125

0 0.00717 0.00444 0.00374 0.00440 0.69 0.25 -0.24

1 0.03234 0.02080 0.01809 0.02422 0.64 0.20 -0.42

2 0.05003 0.03103 0.02782 0.03713 0.69 0.16 -0.42

3 0.07597 0.04559 0.04159 0.05244 0.74 0.13 -0.33

4 0.11953 0.07117 0.06328 0.07194 0.75 0.17 -0.19

5 0.20184 0.12967 0.10222 0.10258 0.64 0.34 -0.0

6 0.45072 0.27077 0.18569 0.18656 0.74 0.54 -0.01

7 1.31312 0.85681 0.50227 0.32812 0.62 0.77 0.61

8 0.00387 0.00000 0.00000 0.00000 14.96

Table 11

Asymmetry in the Sedov problem on 2D uniform grids

rms deviation of band means

band c1 c2 c4 c8

dx 0.01 0.005 0.0025 0.00125

0 0.00023 0.00024 0.00024 0.00025

1 0.00459 0.00473 0.00484 0.00494

2 0.00689 0.00706 0.00724 0.00741

3 0.01051 0.01074 0.01103 0.01128

4 0.01607 0.01644 0.01695 0.01734

5 0.02586 0.02649 0.02742 0.02805

6 0.04238 0.04421 0.04594 0.04676

7 0.02852 0.02471 0.02098 0.01842

8 0.01132 0.01128 0.01128 0.01128
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Figure 44. - At right are illustrated the analysis bands 0 through 8 and a magnified density plot from the highest

resolution Sedov problem run of Figure 42. At left are the band-averaged L1 norms plotted as a function of cell

size dx with the lines color-keyed to the bands plotted at right. Also shown are solid black lines indicating first and

second-order convergence.

Figure 45. - Asymmetry within each band in the Sedov problem, defined as the root-mean-square deviation from the

band mean. Only in the shock-straddling band 7 is this asymmetry found to decrease with increasing resolution, and

this is solely due to the thinning of the steep shock transition within that band. The band definitions and color coding

are the same as for Figure 44.
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In the 2D Sedov problem, the adaptive grid refinement works extremely well, as suggested in Table 14, in

concentrating the computing burden where it is most needed, that is to say precisely at the shock, and in saving

considerable computational expense. In Figure 46 we show that this is also done without compromising the accuracy

and convergence properties. Figures 43 and 46 are virtually identical; the AMR runs for the 2D Sedov problem show

no hint of the disastrous anomaly that bedevils the AMR runs for the 2D Noh problem. There is again that axial

feature at high resolution, that is present also in the uniform grid runs for this problem. The graphs for the AMR

runs that are equivalent to Figures 44 and 45 are so closely identical to them that we'll not bother showing them. We

do, however, display the numbers for accuracy and symmetry in the AMR runs in Tables 12 and 13, which may be

compared with Tables 10 and 11 for the uniform grid runs.

Figure 46. - Plots of the L1 norm for density in the Sedov problem from the baseline run c1 and the three adaptive

mesh runs a2, a4, and a8 Each a run has the same smallest cell size as the uniform cell size in the c run with the same

subscript, giving the same equivalent resolution.

Run times and cell counts for the 2D Sedov problem are listed in Table 14. It is immediately evident that AMR

does a much better job on the 2D Sedov problem than it does on the 2D Noh problem. Cell counts in the AMR runs

increase by a factor
⌦
� for a factor � decrease in the cell size, so the advantage over uniform grid runs goes roughly

as �3/2. Accuracy is not compromised in the AMR runs on the 2D Sedov problem, in contrast to the difficulties

encountered in the 2D Noh problem.
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Table 12

Accuracy and convergence for the Sedov problem on 2D adaptive grids

Band averaged L1 norms Pointwise convergence indices

band c1 a2 a4 a8 q1 q2 q3

dx 0.01 0.005 0.0025 0.00125

0 0.00717 0.00411 0.00354 0.00429 0.80 0.22 -0.28

1 0.03234 0.02016 0.01754 0.02385 0.68 0.20 -0.44

2 0.05003 0.03030 0.02697 0.03591 0.72 0.17 -0.41

3 0.07597 0.04497 0.03903 0.04919 0.76 0.20 -0.33

4 0.11953 0.07289 0.05762 0.06596 0.71 0.34 -0.19

5 0.20184 0.12489 0.09857 0.10084 0.69 0.34 -0.03

6 0.45072 0.26237 0.17233 0.18914 0.78 0.61 -0.13

7 1.31312 0.83914 0.45389 0.26666 0.65 0.89 0.77

8 0.00387 0.0000 0.0000 0.0000 15.47

Table 13

Asymmetry in the 2D Sedov problem on adaptive grids

rms deviation of band means

band c1 a2 a4 a8

dx 0.01 0.005 0.0025 0.00125

0 0.00054 0.00056 0.00058 0.00059

1 0.03101 0.03212 0.03293 0.03375

2 0.04616 0.04743 0.04882 0.05007

3 0.07080 0.07246 0.07494 0.07689

4 0.10779 0.11016 0.11466 0.11775

5 0.17577 0.18042 0.18754 0.19262

6 0.28401 0.29694 0.31034 0.31616

7 0.19436 0.16737 0.13754 0.11797

8 0.07582 0.07553 0.07553 0.07553
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Table 14

Adaptive and Uniform mesh simulations in 2D for the Sedov problem

Type Run dr=dz sum cell sum cpuhr

Baseline c1 0.01 22,500 0.685

Uniform grid c2 0.005 90,000 99.8

c4 0.0025 360,000 251

c8 0.00125 1,440,000 880

AMR grid (min) (at  end)

a2 0.005 30,984 10.6

a4 0.0025 39,444 13.4

a8 0.00125 60,104 25.8

Figure 47 shows the Sedov problem on an adaptive using an unofficial code release from Mike Gittings, version

20050809.400. This plot is indistinguishable by eye from the plot shown in Figure 42, and also indistinguishable

from the same plot for the latest official release 20050818.010. The numbers in the band-averaged L1 norms differ

very slightly between these two versions and as against the earlier version, at a fractional level of ⌥0.0001 or better,

and the cell counts in both the Gittings and official Crestone versions are reduced by about 10% from the counts in

the earlier version.

Figure 47. - Convergence plot for the Sedov problem using the unofficial Gittings RAGE version 20050809.400

showing the L1 norms in the bands defined as before.
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4. Future Directions

Development and implementation of next-generation AMR packages would appear to represent a tremendous

growth opportunity. It is clear that prodigious resources has gone into developing physics modules, but not the grid

technology on which that physics is computed. This is reflected in the appearance of there not being a single group or

team within the Lab that is examining existing AMR technology (Chombo, PARAMESH, SAMARI, HAMR, DAGH,

SARA, SUUMA3D to name a few) with an eye towards the best parts of these technologies into practice at LANL.

New test problems that exercise multi-material and/or multi-temperature capabilities should be developed. In

parallel, calculation verification procedures for complex physics problems that admit no exact solution must be

encouraged to advance. The standard approach to conducting verification analysis where no exact solution exists

presents two significant limitations. Computational solutions that converge by oscillation are not calculable and the

technique is limited to a simple error ansatz. An improvement to the current method is needed. Perhaps the approach

being developed by Smitherman and Kamm (2005) would suffice as a first step. In their method, the absolute value

of the pointwise error is calculated, allowing for local oscillatory convergence. The equations are then solved using

Newton's method for the convergence constants, discretization errors, and an estimated exact solution simultaneously.

This procedure allows for a more complex ansatz if desired.

Automated verification analysis should be completed for two and three dimensional versions of all the existing

Tri-Lab test problems to assess how well RAGE retains fidelity to the underlying physics when motions and gradients

are not grid-aligned.

On September 6, 2005 the adaptive grid results of this report were presented to a well attended V&V meeting

called by Kim New. Two high-level topics surfaced; verification methodology on adaptive grids, relevance of the

Noh problem, and relevance of the Tri-Lab test suite problems. Some of these topics should set directions for future

verification efforts.

The present verification analysis starts with a refinement level 1 base grid and increases number of levels of

refinement. At each level of refinement, at each decrease in cell size, the accuracy of the solution and convergence

coefficients are determined. Mike Gittings vocalized the opinion that this accuracy and convergence methodology

was incorrect. He advocated a 'moving window' approach, where the number of refinement levels is held constant.

That is, one starts with a level 1 grid and drills down (say) four levels of refinement. Then go the level 2 grid and drill

down four levels of refinement, and so on. Several people (Bill Rider, Frank Timmes) vocalized the opinion that this

alternative methodology isn't how AMR is traditionally thought about, advertised, or used. Objections were voiced

that the Noh problem is highly idealized and pathological, presenting a hydrocode with a situation highly unlikely to

present itself in real-life simulations. If tinkering with the refinement criteria in order to improve the performance

of the code on the Noh problem results in deleterious performance on other problems, then the desirability of this

tinkering becomes dubious at best. On the other hand, unlike most AMR packages, there is very little user control

over the refinement criteria in RAGE. It needn't be an 'either or' situtation, the code should be flexible enough to

handle a wide range of problems.

Performance on realistic applications might be robust should multi-material or multi-temperature physics in

complex geometries unambiguously mitigate any difficulties exposed by simple test problems on adaptive grids in

basic geometries. Questions of test problem relevance could be addressed by scaling simpler problems upwards, and
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by having complicated problems stress test adaptive grid technologies and/or distilling the essential computational

physics into simpler forms.
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7. Appendix A - Input Decks

7.1 For the Su & Olson Problem

! Su-Olson Verification Test Problem

! Changed BC's on 10/06/2003:

! Due to discussions with Tom Betlach a temp BC with 1) aTr**4=4Finc/c,

! 2) very opt thin 1st zone, 3) Milne = .true. are now being used.

pname = "suo 100pt" ! problem name

! MESH SETUP

! 20 cm thick 1-D slab

! RECOMMENDATION: Do not use the mesh variables numrho, numfine, numlev,

! smallke, and mxcells. Rather use sizemat.

imxset = 100

dxset = 0.2

! CALCULATION CONTROL

tmax = 1.0e-9 ! Ending simulation time in sec

dtedt(1) = 1.0e-9

dodmpxdt = .true. ! turns on dt adjustment to get dumps at exact dedt time

tedit = 1.0e-9 ! time frequency of binary dump files

kread = -1 ! kread < 0 is new problem; kread>=0 = restart cycle

uselast = .true. ! if .true. and kread<0, "pname-lastdump" = restart file

ncmax = 400000 ! Max # of cycles

dtnext = 1.0e-16 ! initial time step

dtmax = 1.0e-10 ! maximum dt allowed

dtpct = 0.1 ! adjusts init. time step only

de tevpct =.001 ! max change in tev due to radiation

de tevmin = 12.5 ! tev floor, below which de tevpct is ignored

ncedit = 0 ! disable cycle frequency for binary dumps

modcyc = 10000 ! frequency of status edits

shortmodcyc = 200 ! frequency of short edits

ndtedt = 0 ! number of simulation times for std edits (default=0)

! PHYSICS MODULES

dohydro = .false. ! turn off hydro for this Marshak problem (default=.true.)

hydro version = 2 !

numrho = 1 !

doheat = .false. ! turn off heat conduction

dorad = .true. ! turn on radiation

! RADIATION
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onetemp = .false. ! 2-T non-equilibrium diffusion

fluxlim = .false. ! switch for radiation fluxlimiter

! MATERIALS

nummat = 1 ! number of materials

! Use sizemat to control mesh refinement. Note that this has to be

! coordinated with the dxset parameter above.

sizemat(1) = 0.2 ! 1 level of refinement for material 1

!sizemat(1) = 0.1 ! 2 levels, effective 200 points

!sizemat(1) = 0.05 ! 3 levels, effective 400 points

!sizemat(1) = 0.025 ! 4 levels, effective 800 points

!sizemat(1) = 0.0125 ! 5 levels, effective 1600 points

!sizemat(1) = 0.00625 ! 6 levels, effective 3200 points

!sizemat(1) = 0.003125 ! 7 levels, effective 6400 points

! EOS and OPACITY

keos = -3 ! 0 = ideal gas; 1 = sesame; 2 = N/A; 3 = new TEOS files;

! keos < 0 for special analytic EOS

! for the su-olson problem, use keos = -3 for e = aT**4

matdef(1,1) = 0.0 !

matdef(61,1) = 0 ! power law opacity: kappa = coef*(tev/tevz)**power

matdef(62,1) = 1. ! krmax

matdef(63,1) = 0.0 ! power

matdef(64,1) = 1.0 ! coef

matdef(65,1) = 1.0 ! tevz

matdef(66,1) = 0.000001 ! krscat -- for verification test problem

! = 0.201 for Thompson scattering

! krtot = krscat + kra

! REGIONS

numreg = 1

matreg(1) = 1

rhoreg(1) = 1.0 ! density gm/cm**3

tevreg(1) = 1.0e-1 ! T eV

! CONSTANT FLUX BC -- implemented via Tr BC + Milne condition. =====

! Tom Betlach (SAIC) recommended using the aTr**4 = Finc w/ Milne

! & thin 1st zone to provide the desired BC needed

! for the Su-Olson problem.

nomilne = .false. ! default = .false.

milne option = 1 ! sets milne BC to true milne (0=Dirchlett, 2=Spillman)

tevbcl = 1000. ! Tr = 1 keV, (not = 4th root of c/4a )
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7.2 For the Coggeshall #8 Problem

! 1-D Coggeshall-8 problem

pname = "cog 100pt"

test pname = "r008 3v" ! super important to set this name for proper initialization

! CONTROL

time = 1.0e-8 ! starting time; super important for proper initialization

tmax = 2.0e-8 ! Ending simulation time in sec

dtedt(1) = 2.0e-8

dodmpxdt = .true. ! turns on dt adjustment to get dumps at exact dedt time

tedit = 2.0e-8 ! time frequency of binary dump files

dtnext = 1.0e-16 ! initial time step

dtmax = 1.0e-10 ! maximum dt allowed

!dtforce = 1.0e-12

kread = -1

uselast = .true.

ncmax = 400000

ncedit = 0

modcyc = 0

shortmodcyc = 20

dohydro = .true.

dorad = .false.

doheat = .false.

! GRID

! RECOMMENDATION: Do not use the mesh variables numrho, numfine, numlev,

! smallke, and mxcells. Rather use sizemat.

imxset = 100

dxset = 0.02

! SPHERE

cylin = .false.

sphere = .true.

! MATERIALS

keos = 0

nummat = 1

! Use sizemat to control mesh refinement. Note that this has to be

! coordinated with the dxset parameter above.

sizemat(1) = 0.02 ! 1 level of refinement for material 1

!sizemat(1) = 0.01 ! 2 levels, effective 200 points

!sizemat(1) = 0.005 ! 3 levels, effective 400 points

!sizemat(1) = 0.0025 ! 4 levels, effective 800 points

!sizemat(1) = 0.00125 ! 5 levels, effective 1600 points

!sizemat(1) = 0.000625 ! 6 levels, effective 3200 points
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!sizemat(1) = 0.0003125 ! 7 levels, effective 6400 points

matdef(1,1) = 0.0

matdef(16,1) = 0.6666666666

matdef(30,1) = 1.0e12 ! specific heat 1.e12 erg/g/ev = 0.1 jk/g/kev

! Opacity

matdef(61,1) = 0 ! Analytic Opacity:

matdef(62,1) = 1.0e20 ! krmax

matdef(63,1) = +2.0 ! Power: (tevz/te)**powt

matdef(64,1) = 5.485 ! Coef: 4*arad*tevz**3/3/coef = thermcoeff

matdef(65,1) = 1000.0 ! tevz

matdef(66,1) = 0.0 ! krscat

matdef(67,1) = 1.000 ! kpscale

matdef(68,1) = 0.000 ! rho**powd

! Thermal Conductivity

matdef(81,1) = 0

matdef(82,1) = 1.e21 ! Thermcoef 1.e21 erg/ev/cm/s = 1.0 jk/kev/cm/sh

matdef(83,1) = 5.0 ! powt: (te/tevz)**powt

matdef(84,1) = 1000. ! tevz

matdef(85,1) = -1.0 ! powd: rho**powd

! REGIONS

numreg = 2

matreg(1) = 1

rhoreg(1) = 1.0

siereg(1) = 1.0e12

matreg(2) = 1

rhoreg(2) = 3.0

tevreg(2) = 100.0

xdreg(2) = 1.0

xlreg(2) = 0.

xrreg(2) = 2.0

hydro version = 2

numrho = 2

freeze num = 1

freeze x lo(1) = 1.98

freeze x hi(1) = 2.00

numfbc = 12

timefbc(1) =1.0e-8,1.1e-8,1.2e-8,1.3e-8,1.4e-8,1.5e-8,1.6e-8,1.7e-8,1.8e-8,1.9e-8,2.0e-8,2.1e-8

flxtbcl(1)=-1.4286e17,-.66644e17,-.33224e17,-.175128e17,-.96801e16,-.55741e16,

-.33262e16,-.20479e16,-.12963e16,-.8411e15,-.558e15,-.377e15
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7.3 For the Mader Problem

! Mader tri-lab verification problem

pname = "mad 100pt"

! grid

! do not use the mesh variables numrho, numfine, numlev,

! smallke, and mxcells. rather use sizemat.

imxset = 102

dxset = 0.05

! ----- CONTROL

tmax = 6.25e-6 ! Ending simulation time in sec

dtedt(1) = 6.25e-6

dodmpxdt = .true. ! turns on dt adjustment to get dumps at exact dedt time

tedit = 6.25e-6 ! time frequency of binary dump files

dtnext = 1.0e-16 ! initial time step

dtmax = 1.0e-5 ! maximum dt allowed

!dtforce = 1.0e-12

kread = -1 ! kread < 0 is new problem; kread>=0 = restart cycle

uselast = .true. ! if .true. and kread<0, "pname-lastdump" = restart file

ncmax = 500000 ! Max # of cycles

ncedit = 0 ! disable cycle frequency for binary dumps

modcyc = 0 ! frequency of status edits

shortmodcyc = 20 ! frequency of short edits

hydro version = 2

!numrho = 4

! ----- MATERIALS

eosfile = 'val.teos'

keos = 3

nummat = 5

matdef(1,1) = 5030 ! sesame air

matdef(1,2) = 3719 ! sesame Al

matdef(1,3) = 152777 ! Hom solid

matdef(1,4) = 162777 ! GAMMA LAW Validation HE

matdef(1,5) = 3719 ! sesame Al Spall

! Use sizemat to control mesh refinement. Note that this has to be

! coordinated with the dxset parameter above.

sizemat(1) = 0.05 ! 1 levels, effective 100 points

sizemat(2) = 0.05 !

sizemat(3) = 0.05 !
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sizemat(4) = 0.05 !

sizemat(5) = 0.05 !

!sizemat(1) = 0.025 ! 2 levels, effective 200 points

!sizemat(2) = 0.025 !

!sizemat(3) = 0.025 !

!sizemat(4) = 0.025 !

!sizemat(5) = 0.025 !

!sizemat(1) = 0.0125 ! 3 levels, effective 400 points

!sizemat(2) = 0.0125 !

!sizemat(3) = 0.0125 !

!sizemat(4) = 0.0125 !

!sizemat(5) = 0.0125 !

!sizemat(1) = 0.00625 ! 4 levels, effective 800 points

!sizemat(2) = 0.00625 !

!sizemat(3) = 0.00625 !

!sizemat(4) = 0.00625 !

!sizemat(5) = 0.00625 !

!sizemat(1) = 0.003125 ! 5 levels, effective 1600 points

!sizemat(2) = 0.003125 !

!sizemat(3) = 0.003125 !

!sizemat(4) = 0.003125 !

!sizemat(5) = 0.003125 !

!sizemat(1) = 0.0015625 ! 6 levels, effective 3200 points

!sizemat(2) = 0.0015625 !

!sizemat(3) = 0.0015625 !

!sizemat(4) = 0.0015625 !

!sizemat(5) = 0.0015625 !

! ----- REGIONS

numreg = 3

matreg(1) = 1 ! air

prsreg(1) = 1.0e6

tevreg(1) = 0.025

matreg(2) = 3 ! solid VHE

xlreg(2) = 0.0000

xrreg(2) = 5.00000

prsreg(2) = 1.0e6

tevreg(2) = 0.025

matreg(3) = 4 ! Gamma Law VHEB

xlreg(3) = 5.00000

xrreg(3) = 5.10000

rhoreg(3) = 2.500

tevreg(3) = 0.2
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! ----- HE setup

he size = 0.025

he dtpct = 0.4

he number = 1

! ----- VHE

he unreacted(1) = 3 ! VHE

he reacted(1) = 4 ! VHE

he rate size(1) = 0.40

he model(1) = 2 ! Forest Fire

he energy(1) = 0.0

he pcrush(1) = 10.0e9 ! Multiple Shock Forest Fire

he detvel(1) = 8.000e5

he rhoz(1) = 1.875

he pmin(1) = 10.0e9 ! Minimum Forest Fire Pressure

he pcj(1) = 300.0e9 !

! GAMMA LAW VHE Forest Fire

he num coef(1) = 7

he constants(1,1) = -7.4335806250e05,

7.5179600000E+05,-3.0147946875E+05,6.15952500000E+04,

-6.89248339844E+03,4.5775354003E+02,-1.80467948914E+01

he rate size(1) = 0.40
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7.4 For the Reinicke & Meyer-ter-Vehn Problem

! Reinicke Meyer-ter-Vehn Strong Heat Wave, 1D Spherical

pname = "rmtv-100pt"

! CONTROL

tmax = 0.051251245293611e-8

dtedt(1) = 0.051251245293611e-8

dodmpxdt = .true. ! turns on dt adjustment to get dumps at exact dedt time

tedit = 0.051251245293611e-8

dtnext = 1.0e-16 ! initial time step

dtmax = 1.0e-10 ! maximum dt allowed

!dtforce = 1.0e-12

!dtname = 0.051251245293611e-8

kread = -1

uselast = .true.

ncmax = 500000

ncedit = 0 ! disable cycle frequency for binary dumps

modcyc = 0 ! frequency of status edits

shortmodcyc = 100 ! frequency of short edits

dohydro = .true.

doheat = .true.

dorad = .false.

onetemp = .true.

fluxlim = .false.

! GRID

! RECOMMENDATION: Do not use the mesh variables numrho, numfine, numlev,

! smallke, and mxcells. Rather use sizemat.

imxset = 100

dxset = 0.01

! SPHERE

cylin = .false.

sphere = .true. ! Sphere only in 1-D calculations:

! MATERIALS

nummat = 1

! Use sizemat to control mesh refinement. Note that this has to be

! coordinated with the dxset parameter above.

sizemat(1) = 0.01 ! 1 level of refinement for material 1

!sizemat(1) = 0.005 ! 2 levels, effective 200 points

!sizemat(1) = 0.0025 ! 3 levels, effective 400 points

!sizemat(1) = 0.00125 ! 4 levels, effective 800 points

!sizemat(1) = 0.000625 ! 5 levels, effective 1600 points
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!sizemat(1) = 0.0003125 ! 6 levels, effective 3200 points

! EOS

keos = 0

matdef(16,1) = 0.25 ! gamma-1 ==> gamma = 5/4

! matdef(30,1) = 4.6418e+4 ! Cv 11604.5 / ( gamma - 1 )

matdef(30,1) = 4.0e13 ! Cv 1.e13 ==> 1 jk/kev/g

! Opacity

! The analytic models are structured such that Rosseland mean

! absorption coefficient (units: cm**2/g) for this material,

! integrated over all frequencies, is equal to

!

! coef * (tevz/tev use)**powt * (frac mass/frac vol)**powd

! with

! kramax = matdef(62,m) ! recommended default = 1.0e30

! powt = matdef(63,m) ! recommended default = 3

! coef = matdef(64,m) ! recommended default = 0.0

! tevz = matdef(65,m) ! recommended default = 1000.0

! krscat = matdef(66,m) ! recommended default = 0.2

! kpscale = matdef(67,m)

! powd = matdef(68,m) ! recommended default = 0

! model = matdef(69,m) ! recommended default = 1

! hnu edge = matdef(70,m) ! recommended default = 0.0

! pct jump = matdef(71,m) ! recommended default = 0.0

matdef(61,1) = 0 ! use analytic opacity

matdef(62,1) = 1.0e10 ! krmax:

matdef(63,1) = +3.5 ! power-in-temp-dependence: "powt" in (tevz/te)**powt

matdef(64,1) = 5.48806 ! overall coefficient "coef"

matdef(65,1) = 1000.0 ! reference temperature "tevz"

matdef(66,1) = 0.001 ! ?scattering factor? "krscat"

matdef(67,1) = 1.000 ! kpscale: opacity multiplier

matdef(68,1) = 1.000 ! power-in-density-dependence: "powd" in (frac rho)**powd

! Thermal Conductivity

! The analytic thermal conductivity model uses the following

! formula for the thermal conductivity:

!

! thermcoef * rho**powd * (te/tevz)**powt

! with

! thermcoef = matdef(82,nm)

! powt = matdef(83,nm)

! tevz = matdef(84,nm)

! powd = matdef(85,nm)

!

matdef(81,1) = 0 ! use thermal conductivity

matdef(82,1) = 1.e21 ! thermcoef 1.e21 erg/ev/cm/s = 1.0 jk/kev/cm/sh

matdef(83,1) = 6.5 ! power-in-temp-dependence: "powt" in (te/tevz)**powt

matdef(84,1) = 1000.0 ! reference temperature: "tevz"
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matdef(85,1) = -2.0 ! power-in-density-dependence: "powd" in rho**powd

de tevmin = 1.e-8

! REGIONS

! this a hack. one should create a new "test pname =" problem

! from within the code. not only is this blky, but there is a limit

! to the number of allowed lines in an input deck

numreg = 100

! jrk e0 = 333.626 j = 333.626e+16 erg

matreg( 1) = 1

siereg( 1) = 9.931594312173E+18

xlreg( 1) = 0.000000000000E+00

rhoreg( 1) = 5.629839313048E+04

xrreg( 1) = 1.000000000000E-02

radtreg( 1) = 1.e-2

matreg( 2) = 99 * 1

siereg( 2) = 99 * 1.e-2

radtreg( 2) = 99 * 1.e-2

xrreg( 2) = 99 * 1.0000000000000

xlreg( 2) = 1.000000000000E-02

rhoreg( 2) = 6.850303421911E+03

xlreg( 3) = 2.000000000000E-02

rhoreg( 3) = 2.380873954607E+03

xlreg( 4) = 3.000000000000E-02

rhoreg( 4) = 1.177262508115E+03

xlreg( 5) = 4.000000000000E-02

rhoreg( 5) = 6.942969091718E+02

xlreg( 6) = 5.000000000000E-02

rhoreg( 6) = 4.551070997103E+02

xlreg( 7) = 6.000000000000E-02

rhoreg( 7) = 3.200877294838E+02

xlreg( 8) = 7.000000000000E-02

rhoreg( 8) = 2.367377498147E+02

xlreg( 9) = 8.000000000000E-02

rhoreg( 9) = 1.818217897620E+02

xlreg( 10) = 9.000000000000E-02

rhoreg( 10) = 1.438013640083E+02

xlreg( 11) = 1.000000000000E-01

rhoreg( 11) = 1.164314439232E+02

xlreg( 12) = 1.100000000000E-01

rhoreg( 12) = 9.609804602566E+01

xlreg( 13) = 1.200000000000E-01

rhoreg( 13) = 8.059461944066E+01

xlreg( 14) = 1.300000000000E-01

rhoreg( 14) = 6.851343990990E+01
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xlreg( 15) = 1.400000000000E-01

rhoreg( 15) = 5.892286538130E+01

xlreg( 16) = 1.500000000000E-01

rhoreg( 16) = 5.118685380229E+01

xlreg( 17) = 1.600000000000E-01

rhoreg( 17) = 4.485941799852E+01

xlreg( 18) = 1.700000000000E-01

rhoreg( 18) = 3.962049740614E+01

xlreg( 19) = 1.800000000000E-01

rhoreg( 19) = 3.523568376602E+01

xlreg( 20) = 1.900000000000E-01

rhoreg( 20) = 3.153018579344E+01

xlreg( 21) = 2.000000000000E-01

rhoreg( 21) = 2.837156407216E+01

xlreg( 22) = 2.100000000000E-01

rhoreg( 22) = 2.565801955952E+01

xlreg( 23) = 2.200000000000E-01

rhoreg( 23) = 2.331028667754E+01

xlreg( 24) = 2.300000000000E-01

rhoreg( 24) = 2.126591828897E+01

xlreg( 25) = 2.400000000000E-01

rhoreg( 25) = 1.947518981816E+01

xlreg( 26) = 2.500000000000E-01

rhoreg( 26) = 1.789811941499E+01

xlreg( 27) = 2.600000000000E-01

rhoreg( 27) = 1.650227015196E+01

xlreg( 28) = 2.700000000000E-01

rhoreg( 28) = 1.526110852000E+01

xlreg( 29) = 2.800000000000E-01

rhoreg( 29) = 1.415276415527E+01

xlreg( 30) = 2.900000000000E-01

rhoreg( 30) = 1.315908266414E+01

xlreg( 31) = 3.000000000000E-01

rhoreg( 31) = 1.226489509217E+01

xlreg( 32) = 3.100000000000E-01

rhoreg( 32) = 1.145744928392E+01

xlreg( 33) = 3.200000000000E-01

rhoreg( 33) = 1.072596345336E+01

xlreg( 34) = 3.300000000000E-01

rhoreg( 34) = 1.006127288792E+01

xlreg( 35) = 3.400000000000E-01

rhoreg( 35) = 9.455548258065E+00

xlreg( 36) = 3.500000000000E-01

rhoreg( 36) = 8.902069438903E+00

xlreg( 37) = 3.600000000000E-01

rhoreg( 37) = 8.395042703200E+00

xlreg( 38) = 3.700000000000E-01

rhoreg( 38) = 7.929452049362E+00

xlreg( 39) = 3.800000000000E-01

rhoreg( 39) = 7.500937580674E+00

xlreg( 40) = 3.900000000000E-01
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rhoreg( 40) = 7.105695462047E+00

xlreg( 41) = 4.000000000000E-01

rhoreg( 41) = 6.740395194319E+00

xlreg( 42) = 4.100000000000E-01

rhoreg( 42) = 6.402110868352E+00

xlreg( 43) = 4.200000000000E-01

rhoreg( 43) = 6.088263766976E+00

xlreg( 44) = 4.300000000000E-01

rhoreg( 44) = 5.796574226781E+00

xlreg( 45) = 4.400000000000E-01

rhoreg( 45) = 5.525021093713E+00

xlreg( 46) = 4.500000000000E-01

rhoreg( 46) = 5.271807435817E+00

xlreg( 47) = 4.600000000000E-01

rhoreg( 47) = 5.035331435137E+00

xlreg( 48) = 4.700000000000E-01

rhoreg( 48) = 4.814161585038E+00

xlreg( 49) = 4.800000000000E-01

rhoreg( 49) = 4.607015481401E+00

xlreg( 50) = 4.900000000000E-01

rhoreg( 50) = 4.412741625625E+00

xlreg( 51) = 5.000000000000E-01

rhoreg( 51) = 4.230303761139E+00

xlreg( 52) = 5.100000000000E-01

rhoreg( 52) = 4.058767348852E+00

xlreg( 53) = 5.200000000000E-01

rhoreg( 53) = 3.897287854658E+00

xlreg( 54) = 5.300000000000E-01

rhoreg( 54) = 3.745100577216E+00

xlreg( 55) = 5.400000000000E-01

rhoreg( 55) = 3.601511789154E+00

xlreg( 56) = 5.500000000000E-01

rhoreg( 56) = 3.465891001727E+00

xlreg( 57) = 5.600000000000E-01

rhoreg( 57) = 3.337664193271E+00

xlreg( 58) = 5.700000000000E-01

rhoreg( 58) = 3.216307866841E+00

xlreg( 59) = 5.800000000000E-01

rhoreg( 59) = 3.101343823186E+00

xlreg( 60) = 5.900000000000E-01

rhoreg( 60) = 2.992334552478E+00

xlreg( 61) = 6.000000000000E-01

rhoreg( 61) = 2.888879162618E+00

xlreg( 62) = 6.100000000000E-01

rhoreg( 62) = 2.790609774013E+00

xlreg( 63) = 6.200000000000E-01

rhoreg( 63) = 2.697188320821E+00

xlreg( 64) = 6.300000000000E-01

rhoreg( 64) = 2.608303707228E+00

xlreg( 65) = 6.400000000000E-01

rhoreg( 65) = 2.523669274486E+00
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xlreg( 66) = 6.500000000000E-01

rhoreg( 66) = 2.443020540578E+00

xlreg( 67) = 6.600000000000E-01

rhoreg( 67) = 2.366113179529E+00

xlreg( 68) = 6.700000000000E-01

rhoreg( 68) = 2.292721211814E+00

xlreg( 69) = 6.800000000000E-01

rhoreg( 69) = 2.222635381074E+00

xlreg( 70) = 6.900000000000E-01

rhoreg( 70) = 2.155661695574E+00

xlreg( 71) = 7.000000000000E-01

rhoreg( 71) = 2.091620115594E+00

xlreg( 72) = 7.100000000000E-01

rhoreg( 72) = 2.030343370344E+00

xlreg( 73) = 7.200000000000E-01

rhoreg( 73) = 1.971675890015E+00

xlreg( 74) = 7.300000000000E-01

rhoreg( 74) = 1.915472840352E+00

xlreg( 75) = 7.400000000000E-01

rhoreg( 75) = 1.861599248696E+00

xlreg( 76) = 7.500000000000E-01

rhoreg( 76) = 1.809929211707E+00

xlreg( 77) = 7.600000000000E-01

rhoreg( 77) = 1.760345176208E+00

xlreg( 78) = 7.700000000000E-01

rhoreg( 78) = 1.712737285524E+00

xlreg( 79) = 7.800000000000E-01

rhoreg( 79) = 1.667002784614E+00

xlreg( 80) = 7.900000000000E-01

rhoreg( 80) = 1.623045478033E+00

xlreg( 81) = 8.000000000000E-01

rhoreg( 81) = 1.580775235447E+00

xlreg( 82) = 8.100000000000E-01

rhoreg( 82) = 1.540107539982E+00

xlreg( 83) = 8.200000000000E-01

rhoreg( 83) = 1.500963075251E+00

xlreg( 84) = 8.300000000000E-01

rhoreg( 84) = 1.463267347305E+00

xlreg( 85) = 8.400000000000E-01

rhoreg( 85) = 1.426950338191E+00

xlreg( 86) = 8.500000000000E-01

rhoreg( 86) = 1.391946188130E+00

xlreg( 87) = 8.600000000000E-01

rhoreg( 87) = 1.358192903658E+00

xlreg( 88) = 8.700000000000E-01

rhoreg( 88) = 1.325632089330E+00

xlreg( 89) = 8.800000000000E-01

rhoreg( 89) = 1.294208700845E+00

xlreg( 90) = 8.900000000000E-01

rhoreg( 90) = 1.263870817664E+00

xlreg( 91) = 9.000000000000E-01
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rhoreg( 91) = 1.234569433383E+00

xlreg( 92) = 9.100000000000E-01

rhoreg( 92) = 1.206258262300E+00

xlreg( 93) = 9.200000000000E-01

rhoreg( 93) = 1.178893560755E+00

xlreg( 94) = 9.300000000000E-01

rhoreg( 94) = 1.152433961985E+00

xlreg( 95) = 9.400000000000E-01

rhoreg( 95) = 1.126840323327E+00

xlreg( 96) = 9.500000000000E-01

rhoreg( 96) = 1.102075584730E+00

xlreg( 97) = 9.600000000000E-01

rhoreg( 97) = 1.078104637640E+00

xlreg( 98) = 9.700000000000E-01

rhoreg( 98) = 1.054894203383E+00

xlreg( 99) = 9.800000000000E-01

rhoreg( 99) = 1.032412720285E+00

xlreg( 100) = 9.900000000000E-01

rhoreg( 100) = 1.010630238810E+00
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7.5 For the Noh Problem

! 1-D spherical NOH problem

! UNITS are in cgs, except for temperature which is in ev

pname = "noh-100pt" !Problem name

! CONTROL

tmax = 0.3 !Maximum simulation time (real time in sec.)

dtedt(1) = 0.3

dodmpxdt = .true. ! turns on dt adjustment to get dumps at exact dedt time

tedit = 0.3 !Frequency of edit dumps in real simulation time

dtnext = 1.0e-16 ! initial time step

!dtmax = 1.0 ! maximum dt allowed

!dtforce = 1.0e-12

kread = -1 !kread<0 is new problem; kread>=0 then restart cycle = kread

uselast = .true. !If true and kread<0 then use "pname-lastdump" as restart file

ncmax = 500000 !Maximim # of cycles

ncedit = 0 !Frequency of edit dumps in # of cycles

modcyc = 0 !Frequency of status edits in # of cycles

shortmodcyc = 100 !Frequency of short edit dumps

! GRID

! RECOMMENDATION: Do not use the mesh variables numrho, numfine, numlev,

! smallke, and mxcells. Rather use sizemat.

imxset = 100 !Number of level 1 cells in the x-direction

dxset = 0.01 !Size of level 1 cells in x-direction

! MATERIALS

nummat = 1 !Number of materials

! Use sizemat to control mesh refinement. Note that this has to be

! coordinated with the dxset parameter above.

sizemat(1) = 0.01 ! 1 level of refinement for material 1

!sizemat(1) = 0.005 ! 2 levels, effective 200 points

!sizemat(1) = 0.0025 ! 3 levels, effective 400 points

!sizemat(1) = 0.00125 ! 4 levels, effective 800 points

!sizemat(1) = 0.000625 ! 5 levels, effective 1600 points

!sizemat(1) = 0.0003125 ! 6 levels, effective 3200 points

! SPHERE

cylin = .false. !true=r-z cylindrical geometry; false=not cylindrical

sphere = .true. !true=spherical geometry; false=not spherical
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! "freeze regions" are inflow/outflow boundary conditions for an Eulerian mesh

! freeze x lo and freeze x hi determine the extent of the freeze region in

! the x-direction [cm]. The region goes from freeze x lo to freeze x hi.

freeze num = 1 !Number of freeze regions

freeze x lo = 0.90 !Begin freeze region in x-direction [cm]

freeze x hi = 1.00 !End of freeze region in x-direction [cm]

! EOS

keos = 0 !0 = ideal gas EOS; 1 = SESAME EOS; 2 = N/A; 3= new TEOS files

matdef(16,1) = 0.6666667 !Specifying (gamma-1) Gamma = 5/3

matdef(30,1) = 1.0e12 !Specifying Cv - specific heat [erg/gm/ev]

! REGIONS

numreg = 1 !Number of regions

matreg(1) = 1 !Region 1 is of material 1

rhoreg(1) = 1.0 !Density of region 1 [gm/cc]

siereg(1) = 1.0e-10 !Specific Internal energy of region 1 [erg/gm]

xdreg(1) = -1.0 !Initial radial velocity of region 1 [cm/s]

! Hydro options

dohydro = .true. !turn on/off hydro, default is on (.true.)

hydro version = 2 !hydro version=0 is default

!If = 0, use standard hydro method(Lagrange and re-map). If = 1,

!use direct Eulerian hydro method. If = 2, use experimental hydro method.
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7.6 For the Sedov Problem

! Sedov Blast Wave (1-d)

pname = "sed-120pt" !Problem name

! CONTROL

tmax = 1.0 !Maximum simulation time (real time in seconds)

dtedt(1) = 1.0

dodmpxdt = .true. ! turns on dt adjustment to get dumps at exact dedt time

tedit = 1.0 !Frequency of edit dumps in real simulation time

dtnext = 1.0e-16 ! initial time step

!dtmax = 1.0 ! maximum dt allowed

!dtforce = 1.0e-12

kread = -1 !kread<0 is a new problem; kread>=0 then restart cycle=kread

uselast = .true. !If true and kread<0 then use "pname-lastdum" as restart file

ncmax = 500000 !Maximum # of cycles

ncedit = 0 ! disable cycle frequency for binary dumps

modcyc = 0 ! frequency of status edits

shortmodcyc = 200 ! frequency of short edits

dohydro = .true. !true=hydro routines turned on (default); false=hydro not on

doheat = .false. !true=do heat conduction; false=do not do heat cond.(default)

onetemp = .true. !true=equil. diffusion (one temperature)

!false=nonequilibrium diffusion (two temperatures) (default)

! GRID

! RECOMMENDATION: Do not use the mesh variables numrho, numfine, numlev,

! smallke, and mxcells. Rather use sizemat.

imxset = 120 !Number of Level 1 zones in the x-direction:

dxset = 0.01 !Size of Level-1 zones in the x-direction:

! SPHERE

cylin = .false. !true=r-z cylindrical geometry; false=not cylindrical

sphere = .true. !true=spherical geometry; false=not spherical

! MATERIALS

nummat = 1 !Number of materials

! Use sizemat to control mesh refinement. Note that this has to be

! coordinated with the dxset parameter above.

sizemat(1) = 0.01 ! 1 level of refinement for material 1

!sizemat(1) = 0.005 ! 2 levels, effective 240 points

!sizemat(1) = 0.0025 ! 3 levels, effective 480 points

!sizemat(1) = 0.00125 ! 4 levels, effective 960 points

!sizemat(1) = 0.000625 ! 5 levels, effective 1920 points

!sizemat(1) = 0.0003125 ! 6 levels, effective 3840 points

! EOS
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keos = 0 !Use ideal gas equation of state

matdef(16,1) = 0.4 !Specifying (gamma-1); gamma = 1.4

matdef(30,1) = 1.0e-4 !Specifying Cv - specific heat [erg/gm/ev]

! REGIONS

numreg = 2 !Number of regions

matreg(1) = 1 !Region 1 is of material 1

rhoreg(1) = 1.0 !Density of region 1 [gm/cc]

siereg(1) = 2.539731e-8 !Specific internal energy of region 1 [erg/cc]

matreg(2) = 1 !Region 2 is of material 1

rhoreg(2) = 1.0 !Density of region 2 [gm/cc]

siereg(2) = 2.539731e+4 !Specific internal energy of region 2 [erg/cc]

xlreg(2) = 0.0 !Left x-boundary of region 2

xrreg(2) = 0.02 !Right x-boundary of region 2
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8. Appendix B - Analytic Codes

8.1 To the Su & Olson Problem

program suo
implicit none

c..solves the su-olson problem
c..cgs units throughout, except some duly noted temperatures that are in ev

c..declare
character*80 outfile,string
integer i,nstep,iargc
double precision time,zpos,trad bc ev,opac,alpha,

1 erad,trad,trad ev,tmat,tmat ev,
2 zlo,zhi,zstep,value

c..some physics
double precision clight,ssol,asol
parameter (clight = 2.99792458d10,

1 ssol = 5.67051d-5,
2 asol = 4.0d0 * ssol / clight)

c..popular formats
01 format(1x,t4,a,t10,a,t22,a,t34,a,t46,a,t58,a,t70,a)
02 format(1x,i4,1p8e12.4)

c..input parameters
trad bc ev = 1.0d3
opac = 1.0d0
alpha = 4.0d0*asol
time = 1.0d-9

c..number of grid points, spatial domain, spatial step size
nstep = 100
zlo = 0.0d0
zhi = 20.0d0
zstep = (zhi - zlo)/float(nstep)

c..output file
outfile = ’100pt 1em10.dat’
open(unit=2,file=outfile,status=’unknown’)
write(2,02) nstep,time
write(2,01) ’i’,’x’,’trad’,’tev’

c..use the mid-cell points to match various eularian hydrocodes
do i=1,nstep

zpos = zlo + 0.5d0*zstep + float(i-1)*zstep

call so wave(time,zpos,trad bc ev,opac,alpha,
1 erad,trad,trad ev,tmat,tmat ev)

write(6,40) i,zpos,trad ev,tmat ev
write(2,40) i,zpos,trad ev,tmat ev

40 format(1x,i4,1p8e14.6)

enddo
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c..close up stop
close(unit=2)
end

subroutine so wave(time,zpos,trad bc ev,opac,alpha,
1 erad,trad,trad ev,tmat,tmat ev)

implicit none
save

c..provides solution to the su-olson problem

c..input:
c..time = time point where solution is desired
c..zpos = spaatial point where solution is desired
c..trad bc ev = boundary condition temperature in electron volts
c..opac = the opacity in cm**2/g
c..alpha = coe⌅cient of the material equation of state c v = alpha T mat*

c..output:
c..erad = energy desnity of radiation field erg/cm**3
c..trad = temperature of radiation field kelvin
c..trad ev = temperature of radiation field electron volts
c..trad = temperature of material field kelvin
c..trad ev = temperature of material field electron volts

c..declare the input
double precision time,zpos,trad bc ev,opac,alpha,

1 erad,trad,trad ev,tmat,tmat ev

c..local variables
double precision trad bc,ener in,xpos,epsilon,tau,ialpha,

1 uans,vans,usolution,vsolution

c..some physics
double precision clight,ssol,asol,kev,rt3,a4,a4c
parameter (clight = 2.99792458d10,

1 ssol = 5.67051d-5,
2 asol = 4.0d0 * ssol / clight,
3 kev = 8.617385d-5,
4 rt3 = 1.7320508075688772d0,
5 a4 = 4.0d0*asol,
6 a4c = a4 * clight)

c..derived parameters and conversion factors
trad bc = trad bc ev/kev
ener in = asol * trad bc**4
xpos = rt3 * opac * zpos
ialpha = 1.0d0/alpha
tau = a4c * opac * ialpha * time
epsilon = a4 * ialpha

c..get the dimensionless solutions
uans = usolution(xpos,tau,epsilon)
vans = vsolution(xpos,tau,epsilon,uans)

c..compute the physical solution
erad = uans * ener in
trad = (erad/asol)**(0.25d0)
trad ev = trad * kev

tmat = (vans*ener in/asol)**(0.25d0)
tmat ev = tmat * kev
return
end

double precision function usolution(posx in,tau in,epsilon in)
implicit none
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save

c..computes the u solution for the su-olson problem

c..declare the pass
double precision posx in,tau in,epsilon in

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon
integer jwant
common /rots/ jwant

c..local variables
external midpnt,upart1,upart2,

1 gamma one root,gamma two root
logical bracket
integer i,niter
double precision xi1,xi2,midpnt,upart1,upart2,sum1,sum2,

1 gamma one root,gamma two root,
2 zbrent,eta hi,eta lo,eta int

double precision tol,eps,eps2,pi,rt3,rt3opi
parameter (tol = 1.0d-6,

& eps = 1.0d-10,
& eps2 = 1.0d-8,
& pi = 3.1415926535897932384d0,
& rt3 = 1.7320508075688772d0,
& rt3opi = rt3/pi)

c..transfer input to common block
posx = posx in
tau = tau in
epsilon = epsilon in

c..integrand may not oscillate for small values of posx
eta lo = 0.0d0
eta hi = 1.0d0
sum1 = 0.0d0
jwant = 1
bracket = (gamma one root(eta lo)*gamma one root(eta hi).le.0.0)
if (.not.bracket) then

call qromo(upart1,eta lo,eta hi,eps,sum1,midpnt)

c..integrate over each oscillitory piece
else

do i=1,100
jwant = i
eta int = zbrent(gamma one root,eta lo,eta hi,tol,niter)
call qromo(upart1,eta lo,eta int,eps,xi1,midpnt)
sum1 = sum1 + xi1
eta lo = eta int
if (abs(xi1) .le. eps2) goto 10

enddo
10 continue

end if

c..integrand may not oscillate for small values of posx
eta lo = 0.0d0
eta hi = 1.0d0
sum2 = 0.0d0
jwant = 1
bracket = (gamma two root(eta lo)*gamma two root(eta hi).le.0.0)
if (.not.bracket) then

call qromo(upart2,eta lo,eta hi,eps,sum2,midpnt)

c..integrate from hi to lo on this piece
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else
do i=1,100

jwant = i
eta int = zbrent(gamma two root,eta hi,eta lo,tol,niter)
call qromo(upart2,eta hi,eta int,eps,xi2,midpnt)
sum2 = sum2 + xi2
eta hi = eta int
if (abs(xi2) .le. eps2) goto 20

enddo
20 continue

sum2 = -sum2
endif

c..done
usolution = 1.0d0 - 2.0d0*rt3opi*sum1 - rt3opi*exp(-tau)*sum2
return
end

double precision function vsolution(posx in,tau in,epsilon in,
1 uans)

implicit none
save

c..computes the v solution for the su-olson problem

c..declare the pass
double precision posx in,tau in,epsilon in,uans

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon
integer jwant
common /rots/ jwant

c..local variables
external midpnt,vpart1,vpart2,

1 gamma two root,gamma three root
logical bracket
integer i,niter
double precision xi1,xi2,midpnt,vpart1,vpart2,sum1,sum2,

1 gamma two root,gamma three root,
2 zbrent,eta hi,eta lo,eta int

double precision tol,eps,eps2,pi,rt3,rt3opi
parameter (tol = 1.0d-6,

& eps = 1.0d-10,
& eps2 = 1.0d-8,
& pi = 3.1415926535897932384d0,
& rt3 = 1.7320508075688772d0,
& rt3opi = rt3/pi)

c..transfer input to common block
posx = posx in
tau = tau in
epsilon = epsilon in

c..integrand may not oscillate for small values of posx
eta lo = 0.0d0
eta hi = 1.0d0
sum1 = 0.0d0
jwant = 1
bracket = (gamma three root(eta lo)*gamma three root(eta hi)

1 .le. 0.0)
if (.not.bracket) then

call qromo(vpart1,eta lo,eta hi,eps,sum1,midpnt)

c..integrate over each oscillitory piece
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c..from 1 to 0 on this part; this one really oscillates
else

do i=1,100
jwant = i
eta int = zbrent(gamma three root,eta hi,eta lo,tol,niter)
call qromo(vpart1,eta hi,eta int,eps,xi1,midpnt)
sum1 = sum1 + xi1
eta hi = eta int
if (abs(xi1) .le. eps2) goto 10

enddo
10 continue

sum1 = -sum1
end if

c..integrand may not oscillate for small values of posx
eta lo = 0.0d0
eta hi = 1.0d0
sum2 = 0.0d0
jwant = 1
bracket = (gamma two root(eta lo)*gamma two root(eta hi).le.0.0)
if (.not.bracket) then

call qromo(vpart2,eta lo,eta hi,eps,sum2,midpnt)

c..integrate over each oscillitory piece
c..from 1 to 0 on this part; this one really oscillates

else
do i=1,100

jwant = i
eta int = zbrent(gamma two root,eta hi,eta lo,tol,niter)
call qromo(vpart2,eta hi,eta int,eps,xi2,midpnt)
sum2 = sum2 + xi2
eta hi = eta int
if (abs(xi2) .le. eps2) goto 20

enddo
20 continue

sum2 = -sum2
endif

c..done
vsolution = uans - 2.0d0*rt3opi*sum1 + rt3opi*exp(-tau)*sum2
return
end

double precision function upart1(eta)
implicit none
save

c..equation 36 of su & olson jqsrt 1996, first integrand

c..declare the pass
double precision eta

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon

c..local variables
double precision numer,denom,gamma one,theta one,tiny
parameter (tiny = 1.0d-14)

numer = sin(posx*gamma one(eta,epsilon) + theta one(eta,epsilon))

denom = eta * sqrt(3.0d0 + 4.0d0*gamma one(eta,epsilon)**2)
denom = max(tiny,denom)

upart1= exp(-tau*eta*eta) * numer/denom
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return
end

double precision function upart2(eta)
implicit none
save

c..equation 36 of su & olson jqsrt 1996, second integrand

c..declare the pass
double precision eta

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon

c..local variables
double precision numer,denom,gamma two,theta two,tiny
parameter (tiny = 1.0d-14)

numer = sin(posx*gamma two(eta,epsilon) + theta two(eta,epsilon))

denom = eta * (1.0d0 + epsilon*eta) *
& sqrt(3.0d0 + 4.0d0*gamma two(eta,epsilon)**2)

denom = max(tiny,denom)

upart2= exp(-tau/(max(tiny,eta*epsilon))) * numer/denom
return
end

double precision function vpart1(eta)
implicit none
save

c..equation 42 of su & olson jqsrt 1996, first integrand

c..declare the pass
double precision eta

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon

c..local variables
double precision numer,denom,gamma two,theta two,

& gamma three,theta three,eta2,tiny
parameter (tiny = 1.0d-14)

eta2 = eta * eta

numer = sin(posx*gamma three(eta,epsilon) +
& theta three(eta,epsilon))

denom = sqrt(4.0d0 - eta2 + 4.0d0*epsilon*eta2*(1.0d0 - eta2))
denom = max(tiny,denom)

vpart1 = exp(-tau*(1.0d0 - eta2)) * numer/denom
return
end

double precision function vpart2(eta)
implicit none
save

c..equation 42 of su & olson jqsrt 1996, second integrand
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c..declare the pass
double precision eta

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon

c..local variables
double precision numer,denom,gamma two,theta two,tiny
parameter (tiny = 1.0d-14)

numer = sin(posx*gamma two(eta,epsilon) + theta two(eta,epsilon))

denom = eta * sqrt(3.0d0 + 4.0d0*gamma two(eta,epsilon)**2)
denom = max(tiny,denom)

vpart2= exp(-tau/(max(tiny,eta*epsilon))) * numer/denom
return
end

double precision function gamma one root(eta in)
implicit none
save

c..used by a root finder to determine the integration inveral

c..declare the pass
double precision eta in

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon
integer jwant
common /rots/ jwant

c..local variables
double precision gamma one,theta one,pi,twopi
parameter (pi = 3.1415926535897932384d0,

1 twopi = 2.0d0*pi)

c..go
gamma one root = gamma one(eta in,epsilon)*posx

& + theta one(eta in,epsilon)
& - jwant * twopi

return
end

double precision function gamma two root(eta in)
implicit none
save

c..used by a root finder to determine the integration inveral

c..declare the pass
double precision eta in

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon

integer jwant
common /rots/ jwant

c..local variables
double precision gamma two,theta two,pi,twopi
parameter (pi = 3.1415926535897932384d0,
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1 twopi = 2.0d0*pi)

c..go
gamma two root = gamma two(eta in,epsilon)*posx

& + theta two(eta in,epsilon)
& - jwant * twopi

return
end

double precision function gamma three root(eta in)
implicit none
save

c..used by a root finder to determine the integration inveral

c..declare the pass
double precision eta in

c..common block communication
double precision posx,tau,epsilon
common /bdoor/ posx,tau,epsilon

integer jwant
common /rots/ jwant

c..local variables
double precision gamma three,theta three,pi,twopi
parameter (pi = 3.1415926535897932384d0,

1 twopi = 2.0d0*pi)

c..go
gamma three root = gamma three(eta in,epsilon)*posx

& + theta three(eta in,epsilon)
& - jwant * twopi

return
end

double precision function theta one(eta,epsilon)
implicit none
save

c..equation 38 of su & olson jqsrt 1996
c..declare the pass

double precision eta,epsilon

c..local variables
double precision gamma one

theta one = acos(sqrt(3.0d0/(3.0d0 + 4.0d0*gamma one(eta,epsilon)**2)))
return
end

double precision function theta two(eta,epsilon)
implicit none
save

c..equation 38 of su & olson jqsrt 1996
c..declare the pass

double precision eta,epsilon

c..local variables
double precision gamma two

theta two = acos(sqrt(3.0d0 /(3.0d0 + 4.0d0*gamma two(eta,epsilon)**2)))
return
end
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double precision function theta three(eta,epsilon)
implicit none
save

c..equation 43 of su & olson jqsrt 1996
c..declare the pass

double precision eta,epsilon

c..local variables
double precision gamma three

theta three = acos(sqrt(3.0d0 /(3.0d0 + 4.0d0*gamma three(eta,epsilon)**2)))
return
end

double precision function gamma one(eta,epsilon)
implicit none
save

c..equation 37 of su & olson jqsrt 1996
c..declare the pass

double precision eta,epsilon

c..local variables
double precision ein,tiny
parameter (tiny = 1.0d-14)

ein = max(tiny,min(eta,1.0d0-tiny))
gamma one = ein * sqrt(epsilon + 1.0d0/(1.0d0 - ein*ein))
return
end

double precision function gamma two(eta,epsilon)
implicit none
save

c..equation 37 of su & olson jqsrt 1996
c..declare the pass

double precision eta,epsilon

c..local variables
double precision ein,tiny
parameter (tiny = 1.0d-14)

ein = max(tiny,min(eta,1.0d0-tiny))
gamma two = sqrt((1.0d0 - ein) * (epsilon + 1.0d0/ein))
return
end

double precision function gamma three(eta,epsilon)
implicit none
save

c..equation 43 of su & olson jqsrt 1996

c..declare the pass
double precision eta,epsilon

c..local variables
double precision ein,tiny
parameter (tiny = 1.0d-14)

ein = max(tiny,min(eta,1.0d0-tiny))
gamma three = sqrt((1.0d0 - ein*ein)*(epsilon + 1.0d0/(ein*ein)))
return
end
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8.2 To the Coggeshall #8 Problem

program cog test
implicit none

c..tests the cog8 solver
character*80 outfile,string
integer i,nstep,iargc
double precision time,zpos,zleft,zright,rho0,temp0,

1 alpha,beta,gamma,cv,den,tev,ener,pres,vel,
2 zlo,zhi,zstep,value

c..popular formats
01 format(1x,t4,a,t10,a,t22,a,t34,a,t46,a,t58,a,t70,a)
02 format(1x,i4,1p8e12.4)

c..input parameters, time in shakes temp0 in eV, cv in erg/g/eV
time = 2.0d0
rho0 = 3.0d0
temp0 = 100.0d0
alpha = -1.0d0
beta = 2.0d0
gamma = 5.0d0/3.0d0
cv = 1.0d12

c..number of grid points, spatial domain, spatial step size
nstep = 200
zlo = 0.0d0
zhi = 2.0d0
zstep = (zhi - zlo)/float(nstep)

c..output file
outfile = ’200pt 2p0sh.dat’
open(unit=2,file=outfile,status=’unknown’)
write(2,02) nstep,time
write(2,01) ’i’,’x’,’den’,’vel’,’pres’,’tev’

c..to match hydrocode output, use the mid-cell points
do i=1,nstep

zpos = zlo + 0.5d0*zstep + float(i-1)*zstep
zleft = zpos - 0.5d0 * zstep
zright = zpos + 0.5d0 * zstep

call cog8 1d sph(time,zleft,zright,
1 rho0,temp0,alpha,beta,gamma,cv,
2 den,tev,ener,pres,vel)

write(6,40) i,zpos,den,tev,ener,pres,vel
write(2,40) i,zpos,den,tev,ener,pres,vel

40 format(1x,i4,1p8e14.6)

enddo

c..close up stop
close(unit=2)
end

subroutine cog8 1d sph(time,xl,xr,
1 rho0,temp0,alpha,beta,gamma,cv,
2 den,tev,ener,pres,vel)

implicit none
save

c..solves the coggeshall problem #8 in one-dimension, spherical coordinates
c..s.v. coggeshall, phys fluids a 3, 757, 191

c..input:
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c..time = time in shakes units of 1e-8 s,
c..xl = left boundary of cell in cm
c..xr = right boundary of cell in cm
c..rho0 = density constant g/cm**3
c..temp0 = temperature constant in ev
c..alpha = dimensionless constant
c..beta = dimensionless consnat
c..gamma = perfect gas
c..cv = specific heat @ constant volume, erg/g/eV

c..output:
c..den = density g/cm**3
c..tev = temperature ev
c..ener = specific internal energy erg/g
c..pres = presssure erg/cm**3
c..vel = velocity cm/sh

c..declare the pass
double precision time,xl,xr,

1 rho0,temp0,alpha,beta,gamma,cv,
2 den,tev,ener,pres,vel

c..local variables
integer ik,ikp1
parameter (ik = 2, ikp1 = ik + 1)
double precision seventh,rexp1,texp1,

1 dv,dm,dmv,de,aied,pi,volfac,velfac
parameter (pi = 3.1415926535897932384d0,

1 volfac = 4.0d0 * pi,
2 velfac = 1.0d8)

c..the various exponents
seventh = ( ik - 1 ) / ( beta - alpha + 4.0d0)
rexp1 = seventh
texp1 = ( ik + 1 ) + seventh

c..this is the cell averaged solution, slightly di�erent than
c..the exact point solution

dv = volfac * ( xr**ikp1 - xl**ikp1 ) / ikp1
dm = volfac * rho0 * ( xr**(ik+1+rexp1) - xl**(ik+1+rexp1) )

& / (texp1 * time**texp1)
dmv = volfac * rho0 * ( xr**(ik+2+rexp1) - xl**(ik+2+rexp1) )

& / ((texp1 + 1) * time**(texp1 + 1))
de = volfac * rho0 * ( xr**(ik+3+rexp1) - xl**(ik+3+rexp1) )

& / ((texp1 + 2) * time**(texp1 + 2)) * 0.50d0

c..and the quantities of interest
den = dm / dv
vel = dmv / dm * velfac
aied = rho0 * temp0 * cv / time**5
ener = aied / den
tev = ener / cv
pres = (gamma - 1.0d0) * aied

return
end
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8.3 To the Mader Problem

program trare
implicit none
save

c..test the rarefaction wave
character*40 outfile
integer i,nsteps,lout,lenstr
double precision time,xmin,xmax,u piston,p cj,d cj,gamma,xstep,

1 xlab,vel,pres,cs,den,xdet

c..popular format statements
01 format(1x,t10,a,t22,a,t34,a,t46,a,t58,a,t70,a)
02 format(1x,i4,1p6e12.4)

c..set the input parameters
nsteps = 200
time = 6.25d-6
outfile = ’mad 200pt t6p25.dat’

c..set domain, piston speed, cj pressure, detonaton speed, and eos gamma
c..for a mader test problem

xmin = 0.0d0
xmax = 5.0d0
u piston = 0.0d0
p cj = 3.0d11
d cj = 8.0d5
gamma = 3.0d0
xstep = (xmax - xmin)/float(nsteps)

c..open the output file
lout = lenstr(outfile,40)
open(unit=11, file=outfile(1:lout),status=’unknown’)
write (11,01) ’xdet’,’xlab’,’vel’,’den’,’pres’,’csound’

c..to match typical eulerian hydrocode output use the cell centers
do i = 1,nsteps

xlab = xmin + 0.5d0*xstep + float(i-1)*xstep

call rare(time,xlab,xstep,p cj,d cj,gamma,u piston,
1 vel,pres,cs,den,xdet)

c..burns from xmax to xminin rage, so reverse the sign of u on output
write(11,02) i, xdet, xlab, -vel, den, pres, cs

enddo

c..close up shop
close(unit=2)
end

subroutine rare(time,xlab,dx,p cj,d cj,gam,u piston,
1 u,p,c,rho,xdet)

implicit none
save

c..returns the rarefaction wave solution given on page 24
c..of fickett and davis

c..input:
c..time = time for desired solutioon (s)
c..xlab = position in fixed lab frame, eularian frame (cm)
c..dx = width of grid cell (cm)
c..p cj = chapman-jouget pressure (erg/cm**3)
c..d cj = chapman-jouget density (g/cm**3)
c..gam = ratio of specific heats (dimensionless)
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c..u piston = speed of piston (cm/s)

c..output:
c..u = material speed (cm/s)
c..p = pressure (erg/cm**3)
c..c = sound speed (cm/s)
c..rho = mass density (g/cm**3)
c..xdet = position relative to detonation front, lagrangian frame (cm)

c..declare the pass
double precision time,xlab,dx,p cj,d cj,gam,u piston,

1 u,p,c,rho,xdet

c..local variables
double precision gamp1,rho 0,rho cj,c cj,u cj,

1 gamm1,aa,bb,b,d,dd,ee,bp1,dp1,
2 um,xp,half,x,x1,h,x2,dxp,ur,pr,cr,rhor,dist,tol

c..some constants and factors
gamp1 = gam + 1.0d0
rho 0 = gamp1 * p cj /d cj**2
rho cj = rho 0 * gamp1/gam
c cj = gam*d cj/gamp1
u cj = d cj/gamp1

gamm1 = gam - 1.0d0
aa = 1.0d0/(2.0d0 * c cj * time)
bb = (2.0d0 - gamm1 * u cj /c cj)/gamp1
b = 2.0d0 * gam/gamm1
d = 2.0d0/gamm1
dd = 2.0d0/(time*gamp1)
ee = gamm1 * (u cj - 2.0d0*c cj/gamm1)/gamp1
bp1 = b + 1.0d0
dp1 = d + 1.0d0

um = gamm1 * (u cj - 2.0d0*c cj/gamm1)/gamp1
xp = 0.5d0 * gamp1 * time * (u piston - um)
xdet = d cj*time - xlab
dist = abs(xdet - xp)
tol = 0.1d0 * dx

c..solution in the frame relative to detonation front, lagrangian frame
x = xdet
half = 0.5d0*dx
x1 = x - half

c..solution in the rarefaction fan
if (dist.gt.tol .and. xdet.gt.xp) then

u = dd*(x1+half) + ee
p = p cj*((aa*(x1+dx)+bb)**bp1 - (aa*x1 + bb)**bp1)/(dx*aa*bp1)
c = c cj*(aa*(x1+half) + bb)
rho = rho cj*((aa*(x1+dx)+bb)**dp1 - (aa*x1+bb)**dp1)/(dx*aa*dp1)

c..solution if right at the transition point
else if (dist .le. tol) then

c.. partial q’s
x2 = x1+dx
dxp = (x2-xp)
h = dxp/2
u = dd*(x1+h) + ee
p = p cj*((aa*(x1+dxp)+bb)**bp1 - (aa*x1+bb)**bp1)/(dxp*aa*bp1)
c = c cj*(aa*(x1+h) + bb)
rho = rho cj*((aa*(x1+dxp)+bb)**dp1-(aa*x1+bb)**dp1)/(dxp*aa*dp1)

c..residual q’s
ur = u piston
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pr = p cj*(1+gamm1*(u-u cj)/(2.0d0*c cj))**(2.0d0*gam/gamm1)
cr = c cj*(1+gamm1*(u-u cj)/(2.0d0*c cj))
rhor = rho cj*(p/p cj)**(1.0d0/gam)

c..avg q’s
u = ur + (u-ur)*2.0d0*h/dx
p = pr +(p-pr)*2.0d0*h/dx
c = cr + (c-cr)*2.0d0*h/dx
rho = rho + (rho - rhor)*2.0d0*h/dx

c..solution in the constant state
else

u = u piston
p = p cj*(1+gamm1*(u-u cj)/(2.0d0*c cj))**(2.0d0*gam/gamm1)
c = c cj*(1+gamm1*(u-u cj)/(2.0d0*c cj))
rho = rho cj*(p/p cj)**(1.0d0/gam)

endif
return
end



Analytic Codes - RMTV Page 103 LA-CC-05-101

8.4 To the Reinicke & Meyer-ter-Vehn Problem

program rmtv test
implicit none

c..tests the rmtv solver
c..declare

character*80 outfile,string
integer i,nstep,iargc
double precision zpos,

1 aval,bval,chi0,gamma,bigamma,rf,xif,xis,beta0,
2 g0,den,tev,ener,pres,vel,
3 zlo,zhi,zstep,value

c..popular formats
01 format(1x,t4,a,t8,a,t20,a,t32,a,t44,a,t56,a,t68,a,t80,a,

1 t92,a,t104,a,t116,a,t128,a,t140,a,t152,a,t164,a)
02 format(1x,i4,1p8e12.4)

c..input parameters
aval = -2.d0
bval = 6.5d0
chi0 = 1.0d0
gamma = 1.25d0
bigamma = 1.0d0
rf = 0.9d0
xif = 2.0d0
xis = 1.0d0
beta0 = 7.197534d+7
g0 = 1.0d0

c..number of grid points, spatial domain, spatial step size
zlo = 0.0d0
zhi = 1.0d0
nstep = 100
zstep = (zhi - zlo)/float(nstep)

c..output file
outfile = ’rmtv 100pt.dat’
open(unit=2,file=outfile,status=’unknown’)
write(2,02) nstep
write(6,01) ’i’,’x’,’den’,’tev’,’ener’,’pres’,’velx’
write(2,01) ’i’,’x’,’den’,’tev’,’ener’,’pres’,’velx’

c..to match hydrocode output, use the mid-cell points
do i=1,nstep

zpos = zlo + 0.5d0*zstep + float(i-1)*zstep

call rmtv 1d(zpos,
1 aval,bval,chi0,gamma,bigamma,
2 rf,xif,xis,beta0,g0,
3 den,tev,ener,pres,vel)

write(6,02) i,zpos,den,tev,ener,pres,vel
write(2,02) i,zpos,den,tev,ener,pres,vel

enddo

c..close up stop
close(unit=2)
end

subroutine rmtv 1d(rpos,
1 aval in,bval in,chi0,gamma,bigamma,
2 rf,xif in,xis,beta0 in,g0,
3 den,tev,ener,pres,vel)

implicit none
save
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c..solves the rmtv in one-dimension, spherical coordinates
c..this a highly simplified version of kamm’s code that solves for
c..a given point value for a specific tri-lab verification test problem.

c..input:
c..rpos = desired radial position for the solution in cm
c..aval in = power in thermal conductivity chi0 * rho**a * T**b
c..bval in = power in thermal conductivity chi0 * rho**a * T**b
c..chi0 = coe⌅cient in thermal conductivity chi0 * rho**a * T**b
c..gamma = ratio of specific heats
c..bigamma = Gruneisen coe⌅cient (gamma-1)*ener = pres/den = G*temp
c..rf = position of the heat front in cm
c..xif = dimensionless position of the heat front
c..xis = dimensionless position of the shock front
c..beta0 = eigenvalue of the problem
c..g0 = heat front scaling parameter

c..output:
c..den = density g/cm**3
c..tev = temperature ev
c..ener = specific internal energy erg/g
c..pres = presssure erg/cm**3
c..vel = velocity cm/sh

c..declare the pass
double precision rpos,

1 aval in,bval in,chi0,gamma,bigamma,
2 rf,xif in,xis,beta0 in,g0,
3 den,tev,ener,pres,vel

c..local variables
external rmtvfun,fun,derivs
integer i,it
real flag
double precision twoa,twob,u 0,u l,u r,u c,atemp,btemp,rmtvfun,

1 ustar,zeroin,fun,ans,errest,
2 xistar,rstar,gstar,hstar,wstar,tstar,
3 zeta,time,rs,xiwant,usub2,hsub2,wsub2,tsub2,
4 tol,zero,abserr,relerr

parameter (tol = 1.0d-16, zero = 0.0d0,
2 abserr = 1.0d-14, relerr = 1.0d-12)

c..for the ode integration
integer nvar,iwork(1:5),jwork
parameter (nvar = 4, jwork = 100 + 21*nvar)
double precision ystart(nvar),ytemp(nvar),eta1,eta2,epsa,epsr,

1 xi end,xi small,work(jwork)
parameter (epsr = 4.0d-10, epsa = 4.0d-10, xi small=1.0d-4)

c..common block communication
double precision aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom
common /rmtv1/ aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom

c..transfer passed values to common
c..xgeom is for spherical coordinates

aval = aval in
bval = bval in
xif = xif in
beta0 = beta0 in
xgeom = 3.0d0

c..initialize work arrays
do i=1,5

iwork(i) = 0
end do
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do i=1,jwork
work(i) = 0.0d0

end do

c..frequent factors
twoa = 2.0d0 * aval
twob = 2.0d0 * bval
alpha = (twob - twoa + 1.0d0)/(twob - (xgeom + 2.0d0)*aval +xgeom)
amu = 2.0d0 / (gamma - 1.0d0)
kappa = -((twob - 1.0d0)*xgeom + 2.0d0)/(twob - twoa + 1.0d0)
sigma = (twob - 1.0d0)/(alpha*(1.0d0 - aval))

c..equations 28, 30, 33, 29 of kamm 2000
c..for the scale factor, the phyiscal time, and the shock front position

zeta = (((0.5d0 * beta0*bigamma**(bval+1.0d0) * g0**(1.0d0-aval) /
1 chi0)**(1.0d0/(twob - 1.0d0)))/alpha)**alpha

time = (rf/zeta/xif)**(1.0d0/alpha)
rs = zeta * 1.0d0 * abs(time)**alpha

c..this section does a root find to obtain the initial conditions
c..bracket the initial zero-value of u

it = 0
u 0 = (amu*bval*xif**(-((2.0d0*bval) - 1.0d0 )/alpha)

1 / beta0)**(1.0d0/bval)
u l = 0.0d0
u r = 0.5d0
u c = 0.5d0 * ( u l + u r )

10 continue
it = it + 1
atemp = rmtvfun(u l)
btemp = rmtvfun(u r)
if (atemp * btemp .lt. 0.0d0 ) go to 20
if (it .ge. 100) stop ’cannot bracket zero in 100 tries’
u l = u l + 0.1d0 * (u c - u l)
u r = u r - 0.1d0 * (u c - u r)
go to 10

20 continue

c..root bracketed, solve for the zero-value ustar
ustar = zeroin(u l,u r,rmtvfun,tol)

c..form the converged value of the integral
call quanc8(fun, zero, ustar, abserr, relerr,

1 ans, errest, it, flag)

c..equation 11 of kamm 2000 for the position to start the integration from
xistar = xif * exp(-(beta0 * (xif**((twob - 1.0d0)/alpha))*ans))
rstar = xistar * zeta * time**alpha

c..equation 11, 13 of kamm 2000 for the initial values of the other functions
gstar = 1.0d0/(1.0d0 - ustar )
hstar = xistar**(-sigma) * gstar
wstar = 0.5d0 * (amu - (( amu + 1.0d0)*ustar))
tstar = ustar * (1.0d0 - ustar)

c..now integrate
c..beyond the heat front

if (rpos .gt. rstar) then
den = g0 * rpos**kappa
vel = 0.0d0
ener = 0.0d0
pres = 0.0d0
tev = 0.0d0

c..integrate from the heat front to perhaps the shock front
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else
ystart(1) = ustar
ystart(2) = hstar
ystart(3) = wstar
ystart(4) = tstar

xiwant = rpos/zeta/time**alpha
xi end = max(xis,xiwant)
eta1 = log(xistar)
eta2 = log(xi end)
it = 1
call ode(derivs,nvar,ystart,eta1,eta2,epsr,epsa,it,work,iwork)

c..apply equation 15 of kamm 2000 for the post-shock values if we must integrate
if (rpos .le. rs) then

usub2 = ystart(1)
hsub2 = ystart(2)
wsub2 = ystart(3)
tsub2 = ystart(4)

ystart(1) = 1.0d0 - (tsub2/(1.0d0 - usub2))
ystart(2) = (1.0d0 - usub2 )**2 / tsub2 * hsub2
ystart(3) = (tsub2*wsub2 - 0.5d0*((1.0d0-usub2)**4 - tsub2**2)

& / (1.0d0 - usub2)) / (1.0d0 - usub2)**2
ystart(4) = tsub2

c..and integrate to near the origin if nned be
eta1 = eta2
xi end = max(xi small,xiwant)
eta2 = log(xi end)
it = 1
call ode(derivs,nvar,ystart,eta1,eta2,epsr,epsa,it,work,iwork )

end if

c..convert the integration variables to physical quantities
c..equations 5, 2 of kamm 2000

vel = alpha * rpos * ystart(1) / time
den = g0 * rpos**kappa * xi end**sigma * ystart(2)
ener = (alpha*rpos/time)**2 * ystart(4) / (gamma - 1.0d0)
pres = (gamma - 1.0d0) * den * ener
tev = (alpha*rpos/time)**2 * ystart(4) / bigamma

c..convert from jerk = 1e16 erg, kev = 1e3 ev, sh = 10e-8 s to cgs units
vel = vel * 1.0d8
ener = ener * 1.0d16
pres = pres * 1.0d16
tev = tev * 1.0d3

end if

return
end

double precision function rmtvfun(u)
implicit none
save

c..evaluates the expression for the initial integral for a root find

c..declare the pass
double precision u

c..common block communication
double precision aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom
common /rmtv1/ aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom
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c..local variables
external fun
integer numfun
real flag
double precision fun,zero,abserr,relerr,ans,errest,smallval
parameter (zero = 0.0d0,

1 abserr = 1.0d-14,
2 relerr = 1.0d-12,
3 smallval = 1.0d-12)

c..standard quadrature routine
call quanc8 (fun, zero, u, abserr, relerr,

1 ans, errest, numfun, flag)

rmtvfun = log(1.0d0 - smallval) + (beta0 *
1 (xif**(((2.0d0*bval) - 1.0d0)/alpha))*ans)

return
end

double precision function fun(y)
implicit none
save

c.. evaluates the integrand of the initial integral

c..declare the pass
double precision y

c..common block communication
double precision aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom
common /rmtv1/ aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom

c..equation 12 of kamm 2000

fun = ((1.0d0 - (2.0d0 * y)) / (amu - ((amu + 1.0d0)*y)))
1 * (y**(bval - 1.0d0))
2 * ((1.0d0 - y)**(bval - aval))

return
end

subroutine derivs ( t, y, yp )
implicit none
save

c.. evaluates the rhs of the system of odes

c..declare the pass
double precision t,y(1:4), yp(1:4)

c..common block communication
double precision aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom
common /rmtv1/ aval,bval,amu,alpha,xif,beta0,kappa,sigma,xgeom

c..local variables
double precision g1,g2,g3,g4,temp,denom,y1m1,alphainv,omega,

1 eps16,eps12
parameter (eps16 = 1.0d-16, eps12 = 1.0d-12)

c..some factors
y1m1 = y(1) - 1.0d0

if (alpha .eq. 0) stop ’alpha = 0 in routine derivs’
alphainv = 1.0d0 / alpha

if (abs(y(2)) .le. eps16 .or. abs(y(4)) .le. eps16) then
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write(6,*) ’derivs: y(2) or y(4) < eps16’
omega = 1.0d0/eps12 * sign(1.0d0, y(3))* sign(1.0d0, beta0)

& * sign(1.0d0,y(2)) * sign(1.0d0, y(4))
else

if (abs(aval-1.0d0) .le. eps16) stop ’aval=1 in routine derivs’
omega = y(3) * y(2)**(1.0d0 - aval) * y(4)**(-bval) / beta0

end if

c..rhs of original (coupled) ode system
c..equation 26 of kamm 2000

g1 = sigma - (xgeom + kappa + sigma)*y(1)
g2 = y(1)*(alphainv - y(1)) + y(4)*(2.0d0*omega-kappa-sigma)
g3 = omega*(amu*y1m1 + 2.0d0*y(3)) + amu*(alphainv - 1.0d0)

& - xgeom*y(1) - (xgeom+kappa+sigma)*y(3)
g4 = -2.0d0 * (1.0d0 + omega )

c..rhs of uncoupled ode system
c..equations 24, 25 of kamm 2000

denom = y(4) - y1m1**2
if (abs(denom) .le. eps16) stop ’denom=0 in routine derivs’
temp = g2 - (y1m1 * g1)
yp(1) = g1 - ( y1m1 * temp ) / denom
yp(2) = y(2) * temp / denom
yp(3) = g3 - ( yp(1) + y(3) * yp(2) / y(2) )
yp(4) = y(4) * g4

return
end
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8.5 To the Noh Problem

program noh test
implicit none

c..tests the noh solver

c..declare
character*80 outfile,string
integer i,nstep,iargc
double precision time,zpos,

1 rho0,vel0,gamma,xgeom,
2 den,ener,pres,vel,
3 zlo,zhi,zstep,value

c..popular formats
01 format(1x,t4,a,t8,a,t22,a,t36,a,t50,a,t64,a,t78,a,t92,a)
02 format(1x,i4,1p8e12.4)

c..input parameters in cgs
time = 0.3d0
rho0 = 1.0d0
vel0 = -1.0d0
gamma = 5.0d0/3.0d0
xgeom = 3.0d0

c..number of grid points, spatial domain, spatial step size
nstep = 100
zlo = 0.0d0
zhi = 1.0d0
zstep = (zhi - zlo)/float(nstep)

c..output file
outfile = ’noh 100pt.dat’
open(unit=2,file=outfile,status=’unknown’)
write(2,02) nstep,time
write(2,01) ’i’,’x’,’den’,’ener’,’pres’,’vel’

c..to match hydrocode output, use the mid-cell points
do i=1,nstep

zpos = zlo + 0.5d0*zstep + float(i-1)*zstep

call noh 1d(time,zpos,
1 rho0,vel0,gamma,xgeom,
2 den,ener,pres,vel)

write(2,40) i,zpos,den,ener,pres,vel
40 format(1x,i4,1p8e14.6)

enddo

c..close up stop
close(unit=2)
end

subroutine noh 1d(time,xpos,
1 rho1,u1,gamma,xgeom,
2 den,ener,pres,vel)

implicit none
save

c..solves the standard case, (as opposed to the singular or vacuum case),
c..constant density (omega = 0) sedov problem in one-dimension.

c..input:
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c..time = temporal point where solution is desired seconds
c..xpos = spatial point where solution is desired cm

c..output:
c..den = density g/cm**3
c..ener = specific internal energy erg/g
c..pres = presssure erg/cm**3
c..vel = velocity cm/sh

c..declare the pass
double precision time,xpos,

1 rho1,u1,gamma,xgeom,
3 den,ener,pres,vel

c..local variables
double precision gamm1,gamp1,gpogm,xgm1,us,r2,rhop,rho2,u2,e2,p2

c..some parameters
gamm1 = gamma - 1.0d0
gamp1 = gamma + 1.0d0
gpogm = gamp1 / gamm1
xgm1 = xgeom - 1.0d0

c..immediate post-chock values using strong shock relations
c..shock velocity, position, pre- and post-shock density,
c..flow velocity, internal energy, and pressure

us = 0.5d0 * gamm1 * abs(u1)
r2 = us * time
rhop = rho1 * (1.0d0 - (u1*time/r2))**xgm1
rho2 = rho1 * gpogm**xgeom
u2 = 0.0d0
e2 = 0.5d0 * u1**2
p2 = gamm1 * rho2 * e2

c..if we are farther out than the shock front
if (xpos .gt. r2) then

den = rho1 * (1.0d0 - (u1*time/xpos))**xgm1
vel = u1
ener = 0.0d0
pres = 0.0d0

c..if we are between the origin and the shock front
else

den = rho2
vel = u2
ener = e2
pres = p2

end if

return
end
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8.6 To the Sedov Problem

program sedov test
implicit none

c..tests the sedov solver
c..declare

character*80 outfile,string
integer i,nstep,iargc
double precision time,zpos,

1 eblast,rho0,vel0,ener0,pres0,cs0,gamma,
2 xgeom,den,ener,pres,vel,cs,zlo,zhi,zstep,value

c..popular formats
01 format(1x,t4,a,t8,a,t22,a,t36,a,t50,a,t64,a,t78,a,t92,a)
02 format(1x,i4,1p8e12.4)

c..input parameters in cgs
time = 1.0d0
eblast = 0.851072d0
rho0 = 1.0d0
vel0 = 0.0d0
ener0 = 0.0d0
pres0 = 0.0d0
cs0 = 0.0d0
gamma = 1.4d0
xgeom = 3.0d0

c..number of grid points, spatial domain, spatial step size
nstep = 120
zlo = 0.0d0
zhi = 1.2d0
zstep = (zhi - zlo)/float(nstep)

c..output file
outfile = ’sed 120pt.dat’
open(unit=2,file=outfile,status=’unknown’)
write(2,02) nstep,time
write(2,01) ’i’,’x’,’den’,’ener’,’pres’,’vel’,’cs’

c..to match hydrocode output, use the mid-cell points
do i=1,nstep

zpos = zlo + 0.5d0*zstep + float(i-1)*zstep

call sed 1d(time,zpos,
1 eblast,rho0,vel0,ener0,pres0,cs0,gamma,xgeom,
2 den,ener,pres,vel,cs)

write(2,40) i,zpos,den,ener,pres,vel,cs
40 format(1x,i4,1p8e14.6)

enddo

c..close up stop
close(unit=2)
end

subroutine sed 1d(time,xpos,
1 eblast,rho0,vel0,ener0,pres0,cs0,gam in,xgeom in,
2 den,ener,pres,vel,cs)

implicit none
save

c..solves the standard case, (as opposed to the singular or vacuum case),
c..constant density (omega = 0) sedov problem in one-dimension.

c..input:
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c..time = temporal point where solution is desired seconds
c..xpos = spatial point where solution is desired cm
c..eblast = energy of blast erg
c..rho0 = ambient density g/cm**3
c..vel0 = ambient material speed cm/s
c..pres0 = ambient pressure erg/cm**3
c..cs0 = ambient sound speed cm/s
c..gam in = gamma law equation of state
c..xgeom in = geometry factor, =3 in spegerical, 2 in cylindircal, 1 in planar

c..output:
c..den = density g/cm**3
c..tev = temperature ev
c..ener = specific internal energy erg/g
c..pres = presssure erg/cm**3
c..vel = velocity cm/sh

c..declare the pass
double precision time,xpos,

1 eblast,rho0,vel0,ener0,pres0,cs0,gam in,xgeom in,
3 den,ener,pres,vel,cs

c..local variables
external midpnt,midpowl,efun01,efun02,sedr0
integer i
double precision v0,vs,midpnt,midpowl,efun01,efun02,eval1,eval2,

1 alpha,endim,vv,vstep,us,u2,rho2,p2,e2,cs2,
3 zeroin,sedr0,vat,l fun,f fun,g fun,h fun,
4 xgeom old,gamma old,eps,eps2,pi

parameter (eps = 1.0d-12, eps2=1.0d-16,
1 pi = 3.1415926535897932384d0)

c..common block communication
double precision gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val
common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val

c..common block communication with the integration stepper
double precision gam int
common /cmidp/ gam int

c..initialize the old values
data xgeom old/-1.0d0/, gamma old/-1.0d0/

c..set some parameters
rwant = xpos
gamma = gam in
gamm1 = gamma - 1.0d0
gamp1 = gamma + 1.0d0
gpogm = gamp1 / gamm1
xgeom = xgeom in
xg2 = xgeom + 2.0d0

c..various exponents (kamm 2000, equations 42-47 with omega = 0)
a0 = 2.0d0/xg2
a2 = -gamm1/(2.0d0 * gamm1 + xgeom)
a1 = xg2*gamma/(2.0d0 + xgeom*gamm1) *

1 (((2.0d0 * xgeom * (2.0d0 - gamma))/(gamma * xg2**2)) - a2)
a3 = xgeom / (2.0d0 * gamm1 + xgeom)
a4 = xg2 * a1 / (2.0d0 - gamma)
a5 = -2.0d0/(2.0d0 - gamma)

c..frequent combinations (kamm 2000, equations 33-37 with omega = 0)
a val = 0.25d0 * xg2 * gamp1
b val = gpogm
c val = 0.5d0 * xg2 * gamma
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d val = (xg2 * gamp1)/(xg2*gamp1 - 2.0d0*(2.0d0 + xgeom*gamm1))
e val = 0.5d0 * (2.0d0 + xgeom * gamm1)

c..dimensionless origin and shock positions
v0 = 2.0d0 / (xg2 * gamma)
vs = 4.0d0 / (xg2 * gamp1)

c..two energy integrals and the dimensionless energy
c..lower limit of the second energy integral
c..has an integrable power-law singularity.
c..transfer that power-law exponent into gam int
c..integration still expensive, only do it if things have changed

if (xgeom .ne. xgeom old .or. gamma .ne. gamma old) then

call qromo(efun01,v0,vs,eps,eval1,midpnt)

gam int = abs(a3 - a2*xg2 - 2.0d0)
call qromo(efun02,v0,vs,eps,eval2,midpowl)

xgeom old = xgeom
gamma old = gamma

end if

c..kamm equation 85 for and 66
alpha = (xgeom - 1.0d0) * pi * (eval1 + 2.0d0 * eval2/gamm1)
endim = eblast / alpha

c..immediate post-shock values
c..shock position, shock speed, material speed, density,
c..pressure, specific internal energy, and sound speed

r2 = (endim/rho0)**(1.0d0/xg2) * time**(2.0d0/xg2)
us = (2.0d0/xg2) * r2 / time
u2 = 2.0d0 * us / gamp1
rho2 = gpogm * rho0
p2 = 2.0d0 * rho0 * us**2 / gamp1
e2 = p2/gamm1/rho2
cs2 = sqrt(gamma*p2/rho2)

c..if we are farther out than the shock front
if (rwant .gt. r2) then

den = rho0
vel = vel0
pres = pres0
ener = ener0
cs = cs0

c..if we are between the origin and the shock front
else

c..locate the similarity value v that correlates to rwant
vat = zeroin(0.9d0*v0,vs,sedr0,eps2)

c..with the converged value, get the sedov functions
call get fun0(vat,l fun,f fun,g fun,h fun)

c..density, speed, pressure, energy, and sound speed
den = rho2 * g fun
vel = u2 * f fun
pres = p2 * h fun
ener = pres / gamm1 / den
cs = sqrt (gamma * pres/den)

end if
return
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end

double precision function efun01(v)
implicit none
save

c..evaluates the first energy integral for constant density
c..equation 67 and 73 of kamm 2000

c..declare the pass
double precision v

c..common block communication
double precision gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val
common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val

c..go
efun01 = -gpogm * v**2 *

& (a0/v + (a2*c val/ (c val*v - 1.0d0))
& - (a1*e val/(1.0d0 - e val*v))) *
& ((a val*v)**a0 *
& (b val * (c val*v - 1.0d0))**a2 *
& (d val * (1.0d0 - e val*v))**a1)**(-xg2) *
& (b val * (c val*v - 1.0d0))**a3 *
& (d val * (1.0d0 - e val*v))**a4 *
& (b val * (1.0d0 - c val*v/gamma))**a5

return
end

double precision function efun02(v)
implicit none
save

c..evaluates the second energy integrand for constant density (omega=0)
c..equation 67 and 74 of kamm 2000

c..integrand has an integrable power-law singularity at the lower limit
c..of integration of the form (c val*v - 1.0d0)**(a3 - a2*xg2 - 2.0d0)
c..where the exponent is negative.

c..declare the pass
double precision v

c..common block communication
double precision gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val
common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val

c..go
efun02 = -0.5d0 * gamp1/gamma * v**2 *

1 ((gamma - c val*v)/(c val*v - 1.0d0)) *
& (a0/v + (a2*c val/ (c val*v - 1.0d0))
& - (a1*e val/(1.0d0 - e val*v))) *
& ((a val*v)**a0 *
& (b val * (c val*v - 1.0d0))**a2 *
& (d val * (1.0d0 - e val*v))**a1)**(-xg2) *
& (b val * (c val*v - 1.0d0))**a3 *
& (d val * (1.0d0 - e val*v))**a4 *
& (b val * (1.0d0 - c val*v/gamma))**a5

return
end

double precision function sedr0(v)
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implicit none
save

c..find the similarity parameter foir an exact radius value

c..declare the pass
double precision v

c..common block communication
double precision gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val
common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val

c..local variables
double precision l fun, f fun, g fun,h fun
call get fun0(v,l fun,f fun,g fun,h fun)
sedr0 = r2*l fun - rwant
return
end

subroutine get fun0(v,l fun,f fun,g fun,h fun)
implicit none
save

c..computes the functions lambda, f, g & h in the constant density case
c..kamm 200 equation 38-41

c..declare the pass
double precision v,l fun,f fun,g fun,h fun

c..common block communication
double precision gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val
common /slap/ gamma,gamm1,gamp1,gpogm,xgeom,xg2,rwant,r2,

1 a0,a1,a2,a3,a4,a5,a val,b val,c val,d val,e val

c..local variables
double precision eps
parameter (eps = 1.0d-30)

c..go
l fun = (a val*v)**(-a0)
l fun = l fun * (b val * max(eps, c val*v - 1.0d0))**(-a2)
l fun = l fun * (d val * (1.0d0 - e val*v))**(-a1)

f fun = a val * v * l fun

g fun = (b val * max(eps, c val*v - 1.0d0))**a3
g fun = g fun * (b val * (1.0d0 - 0.5d0*xg2*v))**a5
g fun = g fun * (d val * (1.0d0 - e val*v))**a4

h fun = (a val*v)**(a0*xgeom)
h fun = h fun * (b val * (1.0d0 - 0.5d0*xg2*v))**(1.0d0 + a5)
h fun = h fun * (d val * (1.0d0 - e val*v))**(a4 - 2.0d0 * a1)
return
end

subroutine midpowl(funk,aa,bb,s,n)
implicit none
save

c..this routine is an exact replacement for midpnt, except that it allows for
c..an integrable power-law singularity at the lower limit aa.

c..declare
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external funk
integer n,it,j
double precision func,funk,a,aa,b,bb,s,tnm,del,ddel,x,sum

c..common block communication
double precision gam int
common /cmidp/ gam int

c..a little conversion, recipe equation 4.4.3
func(x) = 1.0d0/(1.0d0 - gam int) * x**(gam int/(1.0d0 - gam int))

& * funk(x**(1.0d0/(1.0d0 - gam int)) + aa)
b = (bb - aa)**(1.0d0 - gam int)
a = 0.0d0

c..now exactly as midpnt
if (n .eq. 1) then

s = (b-a) * func(0.5d0*(a+b))
else

it = 3**(n-2)
tnm = it
del = (b-a)/(3.0d0*tnm)
ddel = del + del
x = a + (0.5d0 * del)
sum = 0.0d0
do j=1,it

sum = sum + func(x)
x = x + ddel
sum = sum + func(x)
x = x + del

enddo
s = (s + ((b-a) * sum/tnm)) / 3.0d0

end if
return
end


