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1. Summary

What's New:

Two- and three dimensional verification analysis on uniform and adaptive meshes. Previous efforts considered

only the Noh and Sedov test problems in 2D on uniform (Kamm & Kirkpatrick 2004) and adaptive (Timmes,

Gisler & Hrbek 2005) meshes. The present analysis considers all the Tri-Lab problems in 2D and 3D, quanti-

tatively assessing how well RAGE retains fidelity and symmetry to the underlying physics when motions and

gradients are not necessarily grid-aligned.

•

The Tri-Lab Verification Test suite has become part of the daily regression testing. Daily execution of script

that generates the RAGE input decks, runs the code, compares the numerical and analytical solutions, performs

the multi-dimensional verification analysis, and plots the key results has become part of Code Project A's daily

regression testing (Hrbek et al., 2005; Ankeny & Brock 2006).

•

New analytic solution for the two-dimensional cell-averaged solution of the Coggeshall #8 problem (Timmes &

Clover 2006). The solution reduces the global error norm by an order of magnitude in numerical solutions done

with RAGE.

•

New initialization module for Reinicke Meyer-ter-Vehn problem permits this test problem to be performed in 2D

and 3D for the first time. The new module also provides a more accurate and smoother initial state, which is of

particular importance for convergence studies on adaptive meshes.

•

LLNL's B-division verification efforts on the Tri-Lab Verification Test Suite is using 4 of our analytic solution

codes (Frank Graziani, Carole Woodward).

•

Archiving analytic solution codes, input decks, and results on SourceForge. Building on previous efforts often

required knowing who to ask for what. All relevant material is now stored in a centralized repository.

•

Results:

In general, RAGE shows a high degree of symmetry and fidelity to the underlying physics for test problems

in slab geometries. All of the test problems run in axisymmetric geometries have problems with either large

asymmetries or outright anomalies, particularly for locations near the

•

-axis. The Cog-8 problem has large errors

for locations near the

z

-axis, the RMTV problem shows larger errors on adaptive grids than on the corresponding

uniform grids, the Noh problem has a disastrous low density bubble near the

z

-axis on adaptive meshes, and the

shock fails to reach the correct location along the

z

-axis for the Sedov problem because of a high pressure bubble.z

The computational efficiency of using adaptive grids instead of uniform grids is typically about a factor of twenty

for 4-6 levels of mesh refinement for 2D versions of problems in the Tri-Lab Test Suite. This efficiency gain

isn't generally accompanied by a corresponding reduction in the error between the numerical and analytical

solutions for the same effective spatial resolution when the default AMR settings are used. For several Tri-Lab

test problems the relative errors on adaptive grids are larger than the errors on corresponding uniform grids.

•
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Recommended Directions:

Develop and implement better AMR packages for Code Project A. Tremendous resources have gone into de-

veloping the physics modules, but not the grid technology on which that physics is computed. There doesn't

appear to be a single team directly associated with Code Project A examining present and next-generation AMR

technology - this represents a growth opportunity.

•

Replace the Mader HE detonation test problem. The parameters of Forest-Fire model are cell size and equation

of state dependent, which presents serious difficulties for performing verification studies on different meshes. If

the purpose of this test problem in the Tri-Lab Verification Test Suite is to verify detonation wave physics, then

there are several detonation problems which have far less idiosyncrasies. If the purpose of the test problem is to

verify HE burn models, then additional plans are needed since NOBEL is essentially an unsupported product that

hasn't been updated since 2005.

•

Continue developing and applying rigorous calculation verification procedures for 2D problems that don't admit

an exact solution (Smitherman, Kamm & Brock 2005; Tippett & Timmes 2006). This is a key growth direction

for verification efforts to bridge the gap between analytical test problems and highly-complex applications.

•

This report on multi-dimensional versions of the Tri-Lab Verification Test Suite and its companion report on

1D spatial-temporal convergence properties (Timmes, Fryxell & Hrbek) represent a certain closure to research

efforts on Tri-Lab Verification Test Suite as it is presently defined (see Figure 1). New problems that exercise

multi-material and/or multi-temperature solutions in an extension of the Tri-Lab Verification Test Suite will be

discussed with Livermore and Sandia representatives at NECDC|06.

Su &
Olson

Cog8

Mader

RMTV

Noh

Sedov

Sood

1D
uniform

2D
uniform

1D
AMR

2D
AMR

1D
temporal

1D
scripted

2D
scripted

3D
uniform

3D
AMR

3D
scripted

Analysis Coverage of the present Tri-Lab Verifcation Test Suite:

Kamm & Kirkpatrick 2004

Timmes, Gisler, & Hrbek 2005

Timmes, Fryxell & Hrbek 2006

Figure 1. - Status of LANL's efforts on the Tri-Lab Verification Test Suite. Pioneering efforts by Kamm & Kirkpatrick

(2004) supplied verification analyses on most of the problems on 1D uniform grids and for two problems on 2D uniform

grids. Timmes, Gisler & Hrbek (2005) automated the verification process, extended coverage to adaptive meshes,

initiated temporal domain verification, and ran additional problems in 2D and 3D. The present effort establishes

spatial-temporal convergence and multi-dimensional versions of all the problems on uniform and adaptive meshes.

•
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2. Tri-Lab Verification Test Suite

Most modern, complex simulations are done in two and three dimensions. It is important to consider how well

hydrocodes duplicate the physics in situations where motions and gradients are not grid-aligned. Many complex

simulations that use an Eulerian approach also employ adaptive mesh refinement (AMR). It is important to know if

the fundamental assertion of AMR, that solutions on adaptive grids are as accurate as the solutions on corresponding

uniform grids, is fulfilled for multi-dimensional versions of the Tri-Lab Verification Test Suite. Previous efforts

considered only the Noh and Sedov problems in 2D on uniform (Kamm & Kirkpatrick 2004) and adaptive (Timmes,

Gisler & Hrbek 2005) meshes. This report focuses on multi-dimensional versions of all the Tri-Lab Test problems on

both uniform and adaptive meshes using programs from Code Project A.

The Tri-Lab verification test suite is presently defined by seven problems that have analytical solutions: Su &

Olson, Mader, Reinicke Meyer-ter-Vehn, Coggeshall #8, Noh, Sedov, and Sood (Kamm & Kirkpatrick 2004; Figure

1). In this report RAGE 20060331.0240, was run on the Linux cluster Flash to generate numerical solutions on 2D

and 3D uniform and adaptive meshes for all the Tri-Lab problems (NOBEL 20050331.021 was used for the Mader

problem). The RAGE input decks used are the same ones archived by Timmes, Fryxell & Hrbek (2006), although

several of the input decks were generalized to include temporal or multi-dimensional capability.

After the problems were run, John Grove's AMHCTOOLS (2005a, 2005b) was used to extract the solution data

on the native grid from the binary dump files. If one requests the simulation data from RAGE, the data on the native

mesh is interpolated onto uniform mesh. Extracting the solution data on the native mesh is important for proper

verification analysis, particularly on adaptive meshes.

After the numerical solution on the native was extracted, the absolute L norm and absolute L1 norm were

computed (Kamm, Rider & Brock 2002) as

2

L1,abs =
⌦

(f exact
i � f rage

i )Vi⌦
Vi

L2,abs =

�⌦
(f exact

i � f rage
i )2Vi⌦

Vi

 1/2

where

(1)

V is the appropriate volume element weighting. To be specific, two-dimensional versions of the Su-Olson,

Mader, and Sood problems run in slab geometry have

i

Vi = �xi�y wherei �x is the grid spacing in the x-direction

and

i

�y is the grid spacing in the y-direction. Since RAGE enforces square cells,i �x =i �y . Two-dimensional

versions of the spherical Reinicke Meyer-ter-Vehn, Coggeshall #8, Noh, and Sedov problems run in axisymmetric

coordinates have volume

i

Vi = 2⌅�r� . In this manner the norm weights correspond to how the variable of interest

is treated in the solver, e.g., volume averaged variables have volume norm weights.

After the global error norms were computed, the rates of convergence were determined. For cases where the

time-step controller was held constant and the spatial resolution varied, the L

z

1, error norm was assumed to obeyabs

L1,abs = A
�
�x

⇥� ,

where

(2)

� is the cell spacing andx is the spatial convergence rate (Kamm, Rider & Brock 2002). In this case the rate

of convergence between two grids, one coarse and one fine, is given explicitly by

�

� = log
⇧

L1,abs,fine

L1,abs,coarse

⌃⌥
log

⇧
�xfine

�xcoarse

⌃
. (3)
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This error model follows from a modified-equation analysis which is typically done in terms of length scales - not

volumes. That is, while some problems may use volume elements to compute an error norm, the error model always

uses grid spacings. This raises a pragmatic issue, particularly for problems run with adaptive mesh refinement. The

RAGE dump files, which are cracked by AMHCTOOLS, reports the cell's volume. For 2D Cartesian coordinates the

volume reported is easily converted to the mesh spacing � . For 2D axisymmetric geometries the volume reported

is the shell volume of a right circular torus, which is suitable for the error norm calculation, but we need

x

� for the

convergence calculations. While RAGE/AMHCTOOLS reports the cell center

r

, it doesn't directly report either the

mesh spacing

r

� or the inner and outer radii of the spherical shell. We derived the radial mesh spacing as follows.

The shell volume is

r

V = ⌅�z
�
r2

outer � r2
inner

⇥
= ⌅�z

�⇤
r +

�r
2

⌅2

�
⇤

r � �r
2

⌅2
 

.

Since RAGE enforces square cells,

(4)

� =z � , the solution for the radial grid spacing reduces to a simple quadratic

whose solution is

r

�r =

↵
V

2⌅r
Equations (4) and (5) are valid on both uniform and adaptive meshes in RAGE.

For cases where the spatial resolution was held constant and the temporal resolution varied, the global error norms

were assumed to obey

(5)

L1,abs = B
�
�t

⇥⇥

where

(6)

� is the cell spacing andt is the temporal convergence rate. In this case the rate of convergence between

two temporal resolutions, one coarse and one fine, is given explicitly by

⇥

⇥ = log
⇧

L1,abs,fine

L1,abs,coarse

⌃⌥
log

⇧
�tfine

�tcoarse

⌃
.

One-dimensional cases where both the time-step and spatial resolution were varied are discussed in Timmes, Fryxell,

& Hrbek (2006).

It should be noted that the spatial discretization errors, temporal discretization errors, or coupled space-time

errors may change with time during the numerical simulation. As various physical effects are exercised in different

proportions during an evolution, the dominant contributor to the overall numerical error may not remain the same

(Hemez 2005). For example, the effects of time discretization on a hydrodynamic simulation may be more pronounced

early in the evolution. Likewise, inadequate spatial discretization at some instants of the simulation may be replaced

as the dominant source of solution error by truncation errors at other times (Hemez 2005). These remarks imply that

convergence coefficients in equation may be functions of spacetime. To keep the present study practical, we consider

only the code verification properties at the ending time of a test problem's evolution.

The foregoing analysis has become part of the daily regression testing. That is, daily execution of script generates

the RAGE input decks, runs the code, compares the numerical and analytical solutions, performs the spatial-temporal

verification analysis, and plots the key results (Hrbek et al., 2005; Ankeny & Brock 2006).

The remainder of this report details the verification analysis of the Tri-Lab Verification Test Suite, focusing on

the symmetries present in two- and three-dimensional simulations.

(7)
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2.1 The Su & Olson Problem

The Su & Olson problem is a one-dimensional, half-space, non-equilibrium Marshak wave problem. There is no

hydrodynamics in this test problem. The radiative transfer model is a one-group diffusion approximation with a finite

radiation source boundary condition, where the radiative and material fields are out of equilibrium. As the energy

density of the radiation field increases, energy is transfered to the material (see Figure 2). Su & Olson (1996) found a

quadrature solution for the distribution of radiative energy and material temperature as a function of spacetime. This

test problem is useful for verifying time-dependent radiation diffusion codes. A succinct description of the Su & Olson

problem for the Tri-Lab Verification Test Suite, fortran code for generating solutions, and the 1D spatial-temporal

convergence properties are given in Timmes, Gisler & Hrbek (2005) and Timmes, Fryxell & Hrbek (2006).
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Figure 2. - Summary of the Su & Olson problem in 1D. Shown are the basic setup (upper left), numerical and

analytical solutions at 0.1 sh (upper right), relative errors in the radiation temperature for a uniform grid at a fixed

time-step (lower left), and the relative error in the radiation temperature for various time-step control values on a

fixed uniform grid.

Figure 2 expresses a summary of the one-dimensional version of the Su & Olson problem. The setup and

parameters are illustrated in the upper left. A representative solution on a uniform mesh of 400 cells at 0.001, 0.01

and 0.1 sh is shown in the upper right. Initially, the radiation streams into the slab and the material temperature lags

behind the radiation temperature. As the radiation energy density builds up, the material temperature catches up, and
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by t=0.1 sh the radiation and material temperatures are essentially identical.

In the lower left of Figure 2 is the absolute value of the relative errors in the radiation temperature on uniform

grids with 100, 200, 400, 800, 1600, and 3200 cells at the final time of 0.1 sh. Cusps are due to changes of sign in

the relative error, and the relative cpu cost on a single processor of increasing the spatial resolution is given. The

parameter de tevpctd sets the maximum relative change in the radiation temperature allowed per time-step, and is used

to determine the time-step in the numerical solution of the Su & Olson problem. It was set at a relatively strict value

of 0.01, limiting changes in the radiation temperature to a maximum of 1% in a time-step. The radiation temperature

is in the spatial asymptotic regime with a roughly linear convergence rate at this time-step control setting. In the

lower right of Figure 2 is the absolute value of the relative errors in the radiation temperature for time-step controller

values of de tevpct=0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.0002, 0.001 on a uniform grid of 1600 cells at the final time of

0.1 sh. The radiation temperature is in the temporal asymptotic regime with a roughly linear convergence rate at this

spatial resolution.

The default criteria for triggering adaptive mesh refinement, gradients in the pressure or mass density, don't

produce much refinement for this hydrodynamics-free Marshak wave problem (Timmes, Gisler & Hrbek 2005). As a

result, the solution and errors on 1D adaptive meshes is quantitatively very similar to the numbers for uniform grids.

The left column of Figure 3 shows the radiation temperature for the Su & Olson problem on 100x100, 200x200,

400x400, and 800x800 uniform grids at the final time of 0.1 sh. Even at this coarse visual level, the intrinsic 1D

nature of the test problem is apparent; at any -coordinate the temperature is commensurate with the values indicated

by Figure 2. In the middle column of Figure 3 is the absolute value of the radiation temperature's error relative error

to the analytic solution on the same grids at the same ending time. The cusps at

y

x 7 cm are due to changes of

sign in the relative error, and the magnitude of the errors are almost exactly the same as given by Figure 2. As a

result, a verification analysis on the 2D simulations yields the spatial-temporal convergence rates that are the same

(to within 5 significant figures) as their 1D counterparts. In the right column of Figure 3 is the asymmetry of the

numerical solutions on the same grids at the same ending time. For any value of the

⌥

-coordinate, thex -averaged

value of the radiation temperature was determined. The color maps then reveal the relative difference between the

radiation temperature and the

y

-averaged radiation temperature. Such plots essentially expose the deviations from

slab symmetry. The amplitude of these deviations is always less than 10

y
� . In other words, RAGE is performing

admirably in keeping this 1D problem essentially 1D.

Figure 4 is the adaptive mesh counterpart of Figure 3 for the material temperature. The dots in the figure

represent the grid pints where the various solutions were computed, the color of the dot indicative of the magnitude of

the radiation field. White areas indicate regions where there is no grid, and heavily refined areas appear as continuous

color maps. The left column of Figure 4 shows the material temperature for a Su & Olson problem on adaptive grids

with effective resolutions (if maximally refined everywhere) of 100x100, 200x200, 400x400, and 800x800 cells at the

final time of 0.1 sh. The base grid was a uniform 100x100 mesh. The middle column of Figure 4 displays the relative

errors in the material temperature, while the right column reveals the asymmetries in the numerical solution. Figure

4 reveals that the default criteria for refining a mesh don't produce much refinement for the Su & Olson problem. As

a result, the solution and relative errors on 2D adaptive meshes is largely the same as for the base 100x100 uniform

grid. Note the heavy grid refinement and larger errors near

8

x 18 cm in the adaptive mesh solutions. This feature⌥
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Figure 3. - Radiation temperature (left), relative errors (middle), and asymmetries (right) for the Su& Olson problem

on 100x100, 200x200, 400x400, and 800x800 uniform grid at t=0.1 sh.
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Figure 4. - Material temperature (left), relative errors (middle), and asymmetries (right) for the Su & Olson problem

on 100x100, 200x200, 400x400, and 800x800 adaptive grids at t=0.1 sh.
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appears to be seeded very early (t ⇧ 10� s) in the evolution. The nature and removal of this feature should be

investigated in a follow-up report.

Table 1 details the convergence properties for the Su & Olson problem on 2D uniform grids, and Table 2 shows

the same information for adaptive grids. For uniform grids, the radiation and material temperatures is in the spatial

asymptotic regime with a roughly linear convergence rate at this time-step control setting. For adaptive grids, the

convergence rate is considerably less (

11

� 0.2), because the default mesh refinement criteria doesn't trigger much

refinement for the Su & Olson problem. As a result, the L

⌥
error norm on 2D adaptive meshes is largely the same as

for the base 100x100 uniform mesh.

Table 1

Spatial Convergence Coefficients for the Su & Olson Problem on 2D Uniform Grids

T

1

Trad

# of cells L

mat

1,abs A L� 1,abs A

100x100 6.804E-01 8.583E-01

200x200 3.364E-01 1.016E+00 7.338E+01 4.778E-01 8.451E-01 4.206E+01

400x400 1.666E-01 1.014E+00 7.229E+01 2.452E-01 9.625E-01 7.834E+01

800x800 8.204E-02 1.022E+00 7.608E+01 1.241E-01 9.824E-01 8.825E+01

Table 2

Spatial Convergence Coefficients for the Su & Olson Problem on 2D Adaptive Grids

maximum actual T

�

Trad

# of cells # of cells L

mat

1,abs A L� 1,abs A

100x100 10000 6.486E-01 7.800E-01

200x200 11200 6.315E-01 3.841E-02 7.741E-01 7.613E-01 3.508E-02 9.168E-01

400x400 13600 5.499E-01 1.996E-01 1.818E+00 6.233E-01 2.885E-01 3.510E+00

800x800 14800 4.932E-01 1.570E-01 1.409E+00 5.344E-01 2.221E-01 2.359E+00

Figure 5 shows the radiation temperature for a 3D Su & Olson problem on adaptive grid with an effective

resolution, if maximally refined, of 100x100x100 at the final time of 0.1 sh. The base grid was a uniform 50x50x50

mesh. As in the 2D case, RAGE did an excellent job of maintaining the 1D symmetry of the problem. One difficulty

we faced in the analysis of the 3D versions of the Tri-Lab Test problems was our inability to find a suitable visualization

tool - a tool not just for the RAGE dump files, but for an arbitrary verification or asymmetry analysis. Of course,

one could always take slices through planes parallel to the coordinate axes to reduce the analysis to 2D. For the Su &

Olson problem this gives results that are quite consistent with the results presented above.

�



Chapter 2.1 - Su & Olson Page 14 LA-UR-06-6697

Figure 5. - Material temperature for a 3D Su & Olson problem on a 100x100x100 adaptive mesh at t=0.1 sh.
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2.2 The Coggeshall #8 Problem

Coggeshall (1991) published a collection of analytic self-similar test problems, and ``Coggeshall #8'' or ``Cog8''

is the eighth one listed. The solution to this problem represents an adiabatic expansion plus heat conduction (see

Figure 6). The heat conduction's area weighted flux on each cell face is equal. That is, conduction moves as much

energy into a cell as it removes. Thus, the answers with and without conduction look much the same (Clover 2006). A

succinct description of the Cog8 problem for the Tri-Lab Verification Test Suite, fortran code for generating solutions,

and the 1D spatial-temporal convergence properties are discussed in Timmes, Gisler & Hrbek (2005) and Timmes,

Fryxell & Hrbek (2006).

Figure 6 shows a summary of the one-dimensional version of the Cog8 problem. The setup and parameters are

illustrated in the upper left. A representative solution on a uniform mesh of 200 cells with a time-step controller of

tstab=0.2 is shown in the upper right at the final time of t=20 sh. Analytical and numerical solutions are overlayed

for the mass density, velocity, pressure, and temperature.
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Figure 6. - Summary of the Cog8 problem in 1D. Shown are the basic setup (upper left), numerical and analytical

solutions (upper right), relative errors in the density for a variety of uniform grids at a fixed time-step (lower left),

and the relative error in the density for a variety of time-step control values on a fixed uniform grids.

The image in the lower left of Figure 6 depicts the absolute value of the relative errors in the cell-averaged density

for a variety of uniform grids at the ending time of t=20 sh. The parameter tstab sets change in the time step allowed
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by the material speed, � = tstabt · � / (x |vx| + |vy| + |vz ), and determines the time-step in the numerical solution of

the Cog8 problem. It was set to its default value of 0.2, limiting transport of material to 20% of a cell's width. Cusps

are due to changes of sign in the relative error, and the relative cpu cost on a single processor of increasing the spatial

resolution is given. In general, the error decreases with increasing resolution. However, there are large, persistent

errors at the inner boundary. Getting the right amount of energy to flow into an origin of a sphere is an unsolved

problem, so an error accumulates at the origin whether using the point-wise or cell-averaged quantities. The pressure

and temperature (neither shown) have linear convergence rates while the density and material speed (not shown) have

nearly quadratic convergence rate with spatial resolution at this time-step control setting.

The image in the lower right of Figure 6 displays the absolute value of the relative errors in the density for a

variety of time-step control values on a uniform grid of 1600 cells. Cusps are due to changes of sign in the relative

error, and the relative cpu cost on a single processor of increasing the temporal resolution is given. Values of tstab

|

0.4 produce inaccurate results near the right boundary at the beginning of the simulation, and that error propagates

inwards into the domain. For these large values of tstab, the Cog #8 test problem violates the recommended accuracy

criteria of the code. Neglecting the large values of the time-step controller, the density has a convergence rate

⌃

⇥ ⌥
at 1600 cells and the smallest values of tstab. Although not shown, the pressure has

0
⇥ ⌥ , the temperature about1

⇥ ⌥ 0. , and the material speed about2 ⇥ ⌥ 0. .

A new analytic  solution for  the two-dimensional  cell-averaged solution of  the Cog8 problem is  given by

Timmes & Clover (2006). Briefly, we considered a generalized density evolution for the Cog8 problem of the form

8

⇧ = ⇧0 rrp/t , wheretp ⇧ is the initial density. Excluding boundary points, they found the cell-averaged solution for

the mass enclosed by a cell in axisymmetric geometry is

0
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where

(8)

2F1(a, b, c,w is a hypergeometric function. The upper (subscript) ) and lower (subscriptu ) limits of a cell arel

r ,l r ,u z , andl z . Special forms of equation (8) apply at the points where boundary conditions apply.The cell-averaged

momentum is

u

p(r, z, t) =
2⌅⇧0

t1+tp(3 + rp)

⇧
zur3+rp

u 2F1

⇤
1
2

,�3 + rp
2

,
3
2

,�z2
u

r2
u

⌅
� zur3+rp

l 2F1

⇤
1
2

,�3 + rp
2

,
3
2

,�z2
u

r2
l

⌅

�zlr3+rp
u 2F1

⇤
1
2

,�3 + rp
2

,
3
2

,�z2
l

r2
u

⌅
+ zur3+rp

l 2F1

⇤
1
2

,�3 + rp
2

,
3
2

,�z2
l

r2
l

⌅⌃
,

and the cell-averaged kinetic energy is

(9)
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⌅⇧0

t2+tp(4 + rp)

⇧
zur4+rp

u 2F1

⇤
1
2

,�4 + rp
2

,
3
2

,�z2
u

r2
u

⌅
� zur4+rp

l 2F1

⇤
1
2

,�4 + rp
2

,
3
2

,�z2
u

r2
l

⌅

� zlr4+rp
u 2F1

⇤
1
2

,�4 + rp
2

,
3
2

,�z2
l

r2
u

⌅
+ zur4+rp

l 2F1

⇤
1
2

,�4 + rp
2

,
3
2

,�z2
l

r2
l

⌅⌃
. (10)



Chapter 2.2 - Coggeshall Page 17 LA-UR-06-6697

In the Cog8 problem the temperature follows an evolution that is different than the density, but still a power-law. For

a temperature evolution of T = T0 rb/t , they found the cell-averaged temperature asc

T (r, z, t) =
2⌅T0

tc(2 + b)
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Their improved two-dimensional cell-averaged solution for the Cog8 test problem has been implemented in RAGE's

test problem modules. Some of the differences between point-wise and cell-averaged solutions will be discussed

below; a full comparison is given in Timmes & Clover (2006).

Figure 7. - Frames from a movie of the density evolution on a 100x100 uniform grid with a time-step control value of

tstab=0.2.

(11)
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Figure 7 exhibits four frames from a movie of the density for the Cog8 problem on a 100x100 uniform mesh.

As the material expands, via v = , the density drops quicker farther from the origin. At this visual level of

comparison, the intrinsic spherically symmetric nature of the test problem may not be apparent, but at any value of

the radial distance from the origin the density is commensurate with the values indicated by Figure 6.

Figure 8 compares the absolute value of the relative errors in the density field when the solution is initialized with

the point-wise solution and cell-averaged solution. The left column of images shows the relative errors for the point-

wise approach on uniform grids of 100x100, 200x200, 400x400, and 800x800. The right column displays the relative

errors for the cell-averaged approach on the same set of grids. In all cases the time step was determined by tstab=0.2.

White areas indicate cusps, where the relative error changes sign. Both the point-wise and cell-averaged approaches

have their largest relative errors near the z-axis, indicating the numerical solution is generating an asymmetric solution.

The point-wise error fields exhibit a strong symmetry along the diagonal with two distinct cusps on either side of the

diagonal. The cell-averaged error field is smoother, has a smaller error, and also possesses a symmetry along the

diagonal, although not as prominent.

Table 3 details the convergence properties for the Cog #8 problem on 2D pointwise grids, and Table 4 specifies the

same information for cell-averaged grids. For uniform grids with point-wise analytic solutions, the density, pressure,

temperature, and material speed are in the spatial asymptotic regime with roughly linear convergence rates at this

time-step control setting. For the cell-averaged solutions on uniform grids, the convergence rates and magnitudes

of the L

r/t

error norms are similar. In both cases the error is dominated by a strip near the1 -axis. So, while the

cell-averaged solution in 1D produces significantly smaller errors and similar convergence rates, the cell-averaged

solution in 2D produces similar relative errors and convergence rates, although the relative error field is smoother.

Table 3

Spatial Convergence Coefficients for the Coggeshall #8 Problem on 2D uniform Grids for Point-wise Analytic Solutions

Density Pressure

# of cells L

z

1,abs A L� 1,abs A

100x100 2.308E-04 9.577E+09

200x200 5.473E-05 2.076E+00 3.281E+00 3.306E+09 1.534E+00 1.121E+13

400x400 1.376E-05 1.992E+00 2.093E+00 1.289E+09 1.359E+00 4.437E+12

800x800 3.507E-06 1.972E+00 1.866E+00 5.711E+08 1.174E+00 1.464E+12

Temperature Speed

# of cells L

�

1,abs A L� 1,abs A

100x100 2.667E-02 1.796E+03

200x200 1.055E-02 1.338E+00 1.267E+01 4.623E+02 1.958E+00 1.481E+07

400x400 4.678E-03 1.173E+00 5.278E+00 1.241E+02 1.897E+00 1.074E+07

800x800 2.348E-03 9.947E-01 1.812E+00 3.266E+01 1.926E+00 1.273E+07

�
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Table 4

Spatial Convergence Coefficients for the Coggeshall #8 Problem on 2D uniform Grids for Cell-Averaged Analytic Solutions

Density Pressure

# of cells L1,abs A L� 1,abs A

100x100 2.490E-04 1.024E+10

200x200 5.911E-05 2.074E+00 3.508E+00 3.522E+09 1.540E+00 1.230E+13

400x400 1.507E-05 1.972E+00 2.037E+00 1.371E+09 1.361E+00 4.768E+12

800x800 5.923E-06 1.347E+00 4.821E-02 6.004E+08 1.192E+00 1.729E+12

Temperature Speed

# of cells L

�

1,abs A L� 1,abs A

100x100 2.792E-02 1.839E+03

200x200 1.106E-02 1.336E+00 1.315E+01 4.329E+02 2.087E+00 2.746E+07

400x400 4.921E-03 1.168E+00 5.383E+00 1.060E+02 2.029E+00 2.023E+07

800x800 2.590E-03 9.263E-01 1.266E+00 1.817E+02 -7.768E-01 1.010E+00

The asymmetries in the numerical solutions on uniform grids are revealed in Figure 9. Across any row is the

asymmetry in the mass density, temperature and material speed. Down any column are the asymmetries on 100x100,

200x200, 400x400, and 800x800 uniform grids at the ending time t=20 sh. The color maps plot the relative difference

between the field and its radially-averaged value. These plots essentially give the deviations from spherical symmetry.

Note that the amplitude of these deviations is generally between 10

�

� and 102 � , suggesting that RAGE is keeping a

spherically symmetric problem reasonably symmetric. The density, pressure, and material speed all have their largest

relative asymmetries near the z-axis.

Asymmetries in the numerical solution for the density on adaptive grids are shown in Figure 10. The adaptive

grids have effective resolutions (if maximally refined everywhere) of 100x100, 200x200, 400x400, and 800x800

cells. The base grid was a uniform 100x100 grid. As in Figure 9, the color maps plot the relative difference between

the density and its radially-averaged value, and reveal the asymmetry of the numerical solution. Figure 10 reveals

that the default criteria for mesh refinement, gradients in the pressure or mass density, don't produce much refinement

for the Cog8. As a result, the solutions and relative errors on 2D adaptive meshes are largely the same as for the base

100x100 uniform grid. This might be given the self-similar nature of the Cog8 problem; once the grids refine the

initial conditions, no new grid is added.

6
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Figure 8. - Absolute values of the relative errors for a point-wise solution (left) and cell averaged solution (right) on

100x100, 200x200, 400x400, and 800x800 uniform grids at t=20 sh.
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Figure 9. - Asymmetries in the numerical solutions of the Cog8 problem for the density (left), temperature (middle)

and material speed (right) 100x100, 200x200, 400x400, and 800x800 uniform grids at t=20 sh.
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Figure 10. - Asymmetries in the numerical solution of the Cog8 test problem for the density on adaptive grids with

potential maximum resolutions of 100x100, 200x200, 400x400, and 800x800 adaptive grids at t=20 sh.
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2.3 The Mader Problem

The simplest test of detonation is the one-dimensional gamma-law rarefaction wave burn, for which a slab of

material is initiated on one side and a detonation propagates to the other side. For a Chapman-Jouget detonation speed

of 0.8 cm/ s, it takes 6.25µ s for the detonation to travel 5 cm. The rich structure of a multi-dimensional detonation

is absent in the one-dimensional test problem, and a simple rarefaction wave follows the detonation front (Fickett

& Davis 1979). Expansion of material in the rarefaction depends on the boundary condition where the detonation

is initiated, which is usually modeled as a freely moving surface or a moving piston. For the Mader problem, a

stationary piston is used. In this case, the head of the rarefaction remains at the detonation front since the flow is

sonic there, and the tail of the rarefaction is halfway between the front and the piston. Care must be taken to use as

thin an initiator region as possible in the input deck; otherwise a break in the rarefaction wave occurs (Kirkpatrick,

Wingate & Kamm 2004). A succinct description of the Mader problem for the Tri-Lab Verification Test Suite, fortran

code for generating solutions, and the spatial and temporal convergence properties are discussed elsewhere (Kamm

& Kirkpatrick 2004; Timmes, Gisler & Hrbek 2005; and Timmes, Fryxell & Hrbek 2006).
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Figure 11. - Summary of the Mader problem in 1D. Shown are the basic setup (upper left), numerical and analytical

solutions (upper right), relative errors in the pressure for a variety of uniform grids at a fixed time-step (lower left),

and the relative error in the pressure for a variety of time-step control values on a fixed uniform grid.

Figure 11 displays a summary of the one-dimensional version of the Mader problem. The setup is illustrated in

µ
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the upper left. A representative solution on a uniform mesh of 400 cells with a time-step controller of he dtpct=0.1

is shown in the upper right at the final time of t= 5.0 s . Analytical and numerical solutions are overlayed for the

mass density, pressure, and material speed. Even at this visual level of comparison, it is apparent that the numerical

solution lags behind the analytical solution at this spatial resolution.

The image in the lower left of Figure 11 discloses the absolute value of the relative errors in the pressure for a

variety of uniform grids at the final time of 5.0

µ

s. The parameter he dtpct sets the maximum relative temperature

change allowed per time-step in high explosive material, and determines the time-step in the numerical solution of

the Mader problem. he dtpct was set to its default value of 0.1 in limiting temperature changes to a maximum of

10% in one time-step. Cusps are due to changes of sign in the relative error, and the relative cpu cost on a single

processor of increasing the spatial resolution is given. Except at the

µ

=1.0 cm detonation front, the errors get smaller

with increasing uniform grid resolution. The pressure, density (not shown), and material speed (not shown) all

have roughly linear convergence rates that become smaller with increasing spatial resolution at this time-step control

setting.

The image in the lower right of Figure 11 reveals the absolute value of the relative errors in the pressure for

a variety of time-step control values on a uniform grid of 400 cells. The relative cpu cost on a single processor

of increasing the temporal resolution is given. Values of he dtpct

x

0.2 tend to produce inaccurate results near the

detonation front and in the constant-state region x

⌃
3.0 cm. The pressure, density (not shown), material speed (not

shown) all have a convergence rate of

⌃
⇥ ⌥ at these spatial resolutions. That is, the L0 norms for Mader problem

appear largely independent of the chosen time-step, suggesting that persistent spatial inaccuracies dominate the overall

error budget.

Failure of the detonation front to reach

1

=1 cm after 5x s, along with difficulty in finding the temporal asymptotic

regime, may derive from the parameters used in the Forest-Fire model, a global reaction kinetics model for the high-

pressure chemical decomposition of heterogeneous explosives (Mader 1997). The Forest-Fire model parameters were

supposedly calculated for a uniform grid spacing of 0.025 cm, 200 cells for a 5 cm domain, (Kamm & Kirkpatrick

2004, K. New, private communication 2005). Even at this spatial resolution, the detonation front fails to reach the

correct

µ

=1 cm location. At a grid spacing of 0.0015625 cm, or 3200 points, there begins to be sufficient resolution

for the detonation to reach the correct position. It is well known, however, that the parameters of Forest-Fire model are

cell size and equation of state dependent quantities (Mader 1997), which presents serious difficulties for performing

verification studies on adaptive meshes. In addition, we couldn't find anyone who could (or would) state with certainty

how the model parameters are to be derived. If the purpose of this test problem in the Tri-Lab Verification Test Suite

is to verify detonation wave physics, then there are detonation problems which have far less idiosyncrasies. If the

purpose of the test problem is to verify HE burn models, then additional plans are needed since NOBEL is essentially

an unsupported product that hasn't had a new release since 2005.

Figure 12 exhibits four frames from a movie of the density for the Mader problem on a 200x200 uniform mesh.

At a visual level of comparison, the intrinsic one-dimensionality of the test problem is apparent; at any value of the

x

-coordinate the pressure is commensurate with the one-dimensional values indicated by Figure 11. There is no

obvious visual signs of the intrinsic cellular nature of a 2D detonation, but this may be because a initial perturbation

in the density wasn't applied and/or the problem wasn't run long enough for the cellular nature to develop.

y
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In the left column of Figure 13 is the numerical solution for the density on uniform grids of 100x100, 200x200,

400x400, and 800x800 at the final time of t=5.0 s. In the viewgraph norm, the problem appears to remain one-

dimensional. The width of the rarefaction's tail region, where the transition to a constant state is made at 3.0 cm,

becomes thinner as the spatial resolution is increased. In addition, the head of the detonation gets closer to the correct

µ

=1.0 cm position as the resolution increases.

Figure 12. - Frames from a movie of the pressure density evolution on a 200x200 uniform grid with a time-step

control value of he dtpct=0.1.

The middle column of Figure 13 details the relative error in the density for the same set of uniform grids and

ending time. The largest errors occur at the head of the detonation front and in the tail region of the detonation,

independent of resolution. The distribution of relative errors appears to be one-dimensional. The right column of

Figure 13 is the adaptive mesh analogue of the middle column. Dots in the figure represent the grid pints where the

various solutions were computed, the color of the dot indicative of the magnitude of the density field. White areas

indicate regions where there is no grid, and heavily refined areas appear as continuous color maps. The base grid from

which refinement began is a uniform 100x100 mesh. This gives a visual indication of the effectiveness of adaptive

x
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meshing on the Mader problem. Note that errors are generally larger on adaptive grids, particularly in the region

between the head and tail of the Taylor wave.

Figure 14 shows the solutions and relative errors for the pressure, while Figure 15 gives the same information for

the material speed. Curiously, the pressure variable possesses a clumping of the relative errors in the constant region

on both uniform and adaptive grids. As for the density, the largest relative errors appear at the head and tail regions

of the rarefaction wave.

Table 5 details the convergence properties for the Mader problem on 2D uniform grids, while Table 6 lists the

same information for adaptive grids. For uniform grids, the density, pressure, and material speed are in the spatial

asymptotic regime with roughly linear convergence rates at this time-step control setting. For adaptive grids, the

L error norms are larger and the convergence rates are smaller,1 � 0.5. Thus, adaptive grids produce significant

computational efficiencies for the Mader problem in 2D at the expense of a reducing convergence rate.

Table 5

Spatial Convergence Coefficients for the Mader Problem on 2D Uniform Grids

Density Pressure Speed

# of cells L

⌥

1,abs A L� 1,abs A L� 1,abs A

100x100 5.313E-02 1.621E+10 1.308E+04

200x200 2.785E-02 9.319E-01 8.666E-01 8.349E+09 9.570E-01 2.849E+11 6.628E+03 9.806E-01 2.469E+05

400x400 1.434E-02 9.582E-01 9.548E-01 4.160E+09 1.005E+00 3.400E+11 3.219E+03 1.042E+00 3.097E+05

800x800 7.270E-03 9.795E-01 1.048E+00 1.871E+09 1.153E+00 6.498E+11 1.397E+03 1.205E+00 6.311E+05

Table 6

Spatial Convergence Coefficients for the Mader Problem on 2D Adaptive Grids

maximum total Density Pressure Speed

# of cells # of cells L

�

1,abs A L� 1,abs A L� 1,abs A

100x100 10000 5.313E-02 1.621E+10 1.308E+04

200x200 35704 4.223E-02 3.314E-01 1.434E-01 1.212E+10 4.191E-01 5.688E+10 1.025E+04 3.519E-01 3.754E+04

400x400 32440 2.848E-02 5.682E-01 3.434E-01 8.630E+09 4.901E-01 7.390E+10 6.852E+03 5.809E-01 8.736E+04

800x800 34072 2.296E-02 3.109E-01 1.112E-01 6.197E+09 4.777E-01 7.000E+10 5.303E+03 3.698E-01 3.463E+04

Figure 16 reveals the asymmetry in the numerical solutions of the density (left column), pressure (middle column),

and material speed (right) column on uniform grids of of 100x100, 200x200, 400x400, and 800x800 at the final time

of t=5.0

�

s. No reference to the analytical solution is made for these plots; they are an analysis of only the symmetry

in the numerical solution. For any value of the

µ

-coordinate, thex -averaged value of a given field was determined.

The color maps then express the relative difference between the field and its

y

-averaged value, yielding the deviations

from slab symmetry. The asymmetries are the smallest ahead of the front, with deviations at the limit of double

precision arithmetic. The largest asymmetries occur in regions where the field variables are constant, with deviations

y
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on the order of 1%. Curiously, the asymmetries in these regions are not constant across the -coordinate. In other

words, while RAGE generally performs well in keeping this 1D problem essentially 1D, there are some unexpectedly

large variations in regions of constant density, constant pressure, constant material speed. Is is possible that these

variations are the beginning (numerically seeded) of the the cellular nature of a detonation. Future studies should run

the problem out to longer times and perhaps seed the instability from the beginning.

Figure 17 shows the pressure for a Mader problem in 3D on uniform grids of 50x50x50 and 100x100x100. At

the view-graph norm, the intrinsic one-dimensional nature of the test problem is apparent; the pressure at any

y

- andy

-coordinate is commensurate with the values indicated by Figure 11. One difficulty we faced in the analysis of

the 3D problem was our inability to find a suitable visualization tool - not just for the RAGE dump files, but for an

arbitrary verification analysis. Slices through planes parallel to the coordinate axes reduce the verification analysis to

2D and produce results consistent with the results presented above.

z
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Figure 13. - Density (left), relative error in the density on uniform grids (middle), and relative errors in the density on

adaptive grids for the Mader problem on 100x100, 200x200, 400x400, and 800x800 grids (top to bottom) at t=5.0 s.µ
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Figure 14. - Pressure (left), relative error in the pressure on uniform grids (middle), and relative errors in the

pressure on adaptive grids for the Mader problem on 100x100, 200x200, 400x400, and 800x800 grids (top to bottom)

at t=5.0 s.µ
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Figure 15. - Material speed (left), relative error in the speed on uniform grids (middle), and relative errors in the

speed on adaptive grids for the Mader problem on 100x100, 200x200, 400x400, and 800x800 grids (top to bottom) at

t=5.0 s.µ
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Figure 16. - Asymmetry in the density (left), pressure (middle) and material speed (right) for the Mader problem on

100x100, 200x200, 400x400, and 800x800 uniform grids (top to bottom) at t=5.0 s.µ
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Figure 17. - Pressure for a mader problem on a 50x50x50 uniform mesh (left) and a 100x100x100 uniform mesh

(right) at t=5.0 s.µ
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2.4 The Reinicke & Meyer-ter-Vehn Problem

The Reinicke Meyer-ter-Vehn (1991, henceforth RMTV) problem in the Tri-Lab Verification Test Suite has an

initial concentrated energy source of sufficient magnitude so that heat conduction dominates the fluid flow. That is, a

thermal front leads a hydrodynamic shock. The other case, where the thermal front lags the hydrodynamic shock is not

presently part of the Tri-Lab Suite. RMTV examined the self-similar case and found that the fluid equations reduced

to a set of four ordinary differential equations (ODEs). Evaluation of the initial conditions and multiple-region ODE

integrations gives the RMTV problem has the distinction of possessing the most complicated `analytical' solution

in the Tri-Lab Test Suite. Nevertheless, this problem is useful for verifying the coupling between time-dependent

thermal conduction and shock hydrodynamics (Clover, Kamm, Rider, 2000; Kamm 200a). A succinct description

of the RMTV problem for the Tri-Lab Verification Test Suite, fortran code for generating solutions, and the spatial

and temporal convergence properties are discussed in Timmes, Gisler & Hrbek (2005) and Timmes, Fryxell & Hrbek

(2006).
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Figure 18. - Summary of the RMTV problem in 1D. Shown are smooth particle hydrodynamics visualization of

a supercritical shock, where a thermal front leads the hydrodynamic shock (upper left), numerical and analytical

solutions (upper right), relative errors in the temperature for a variety of uniform grids at a fixed time-step (lower

left), and the relative error in the temperature for a variety of time-step control values on fixed uniform grids.

Multi-dimensional versions of the RMTV problem wouldn't have been possible without the development a new
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initialization module for RAGE (Timmes & Clover 2006). The new module provides an accurate and smooth initial

state, which is particularly important for verification analyses on adaptive meshes.

Figure 18 displays a representative solution on a 800 cell uniform mesh with a time-step controller of siepct=0.2

in the upper right at the final time of t= 5.125 10⇤ � s. Analytical and numerical solutions are overlayed for the mass

density, pressure, temperature and material speed. The analytic and numerical solutions reasonably agree at this level

of visual comparison, although there is a difference in the location of the thermal front's leading edge (green curve) at

this spatial resolution.

The image in the lower left of Figure 18 displays the absolute value of the relative errors in the temperature for a

variety of uniform grids at the final time of 5.125

10

10⇤ � s. The parameter siepct sets the maximum fractional change

in the specific internal energy per time-step. It also determines the time-step in the numerical solution of the RMTV

problem and was set at its default value of 0.2, limiting changes in any cell's specific internal energy to 20% in a

time-step. The relative cpu cost on a single processor of increasing the spatial resolution is given. Large persistent

errors exist at the leading edge of the thermal front at x=0.9 cm and at the shock front at 0.45 cm. Other cusps are

due to changes of sign in the relative error. In the region between the origin and shock at 0.45 cm the errors generally

decrease with increasing spatial resolution, but fail to follow a clear pattern. In the region between the shock front at

0.45 cm and the thermal front at 0.90 cm the errors associated with the density solution saturate (not shown), but the

temperature and velocity errors (not shown) increase (!) with increasing resolution.

The image in the lower right of Figure 18 reveals the absolute value of the relative errors in the temperature

for a variety of time-step control values on a uniform grid of 800 cells. The relative cpu cost on a single processor

of increasing the temporal resolution is given. The density, pressure, temperature, and material speed all have a

convergence rate of

10

⇥ ⌥ at these spatial resolutions. That is, the L0 norms for RMTV problem appear largely

independent of the chosen time-step, suggesting the error budget is dominated by the spatial errors from the heat front

and shock.

In the left column of Figure 19 is the numerical solution for the density on uniform grids of 100x100, 200x200,

400x400, and 800x800 at the final time of t=5.125

1

10⇤ � s. As the spatial resolution is increased, the width of the

density peak, which marks the hydrodynamic shock, becomes thinner and more symmetrical. The location of the

shock front at

10

=0.45 cm is in visual agreement with the one-dimensional values of Figure 19.

The middle column of Figure 19 displays the relative error in the density (compared to the analytical solution) for

the same set of uniform grids and ending time. In general, the errors are about 10

r

� - 104 � . There are non-zero errors

ahead of the density peak because the thermal front is ahead of the hydrodynamic front. Cusps are due to changes of

sign in the relative error and are easily visible as the blue valleys, one starting from the

5

-axis and a second starting

on the

z

-axis. The images aren't symmetric at any spatial resolution, suggesting the underlying numerical solution

isn't axisymmetric. In addition, the relative error in the density is larger for locations near the

r

-axis than for points

near the

z

-axis. For these uniform grids Table 7 reveals the globalr L error norm decreases as the spatial resolution

increases at a rate consistent with linear convergence.

The right column of Figure 19 is the adaptive mesh analogue of the middle column. The base grid from which

refinement began is a uniform 100x100 mesh. The maximum spatial resolution of each adaptive mesh is set equal to

the uniform mesh counterpart. Dots in the figure represent the grid pints where the various solutions were computed,

1
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Figure 19. - Density (left), relative error in the density on uniform grids (middle), and relative errors in the density

on adaptive grids for the RMTV problem on 100x100, 200x200, 400x400, and 800x800 grids (top to bottom) at

t=5.125 10⇤ � s10
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the color of the dot indicative of the magnitude of the density field. White areas indicate regions where there is

no grid, and heavily refined areas appear as continuous color maps. This gives a direct visual indication of the

effectiveness of adaptive meshing on the RMTV problem. However, this efficiency gain isn't generally accompanied

by a corresponding reduction in the difference between the numerical and analytical solutions. In fact, the errors on

adaptive grid solutions are larger than the errors on corresponding uniform grids. On uniform grids, for example, the

region between the heat front and the shock is blueish indicating a smaller relative error. On the adaptive grids this

region is redder indicating larger errors. Note the odd refinement features near the shock front. For these adaptive

grids Table 8 demonstrates the global L error norm increases as the spatial resolution increases. That is, the solutions

on adaptive grids are not as accurate as the solutions on uniform grids. This is probably an artifact of RAGE's adaptive

grid refinement algorithm.

Table 7

Spatial Convergence Coefficients for the RMTV Problem on 2D Uniform Grids

Density Pressure

# of cells L

1

1,abs A L� 1,abs A

100x100 3.055E-01 1.377E+16

200x200 1.376E-01 1.151E+00 6.117E+01 6.178E+15 1.156E+00 2.822E+18

400x400 7.003E-02 9.745E-01 2.404E+01 2.879E+15 1.101E+00 2.116E+18

800x800 3.846E-02 8.648E-01 1.246E+01 1.517E+15 9.248E-01 7.341E+17

Temperature Speed

# of cells L

�

1,abs A L� 1,abs A

100x100 1.591E+02 6.127E+06

200x200 6.643E+01 1.260E+00 5.256E+04 2.630E+06 1.220E+00 1.688E+09

400x400 3.030E+01 1.133E+00 2.682E+04 1.279E+06 1.041E+00 6.521E+08

800x800 1.476E+01 1.038E+00 1.518E+04 6.919E+05 8.861E-01 2.585E+08

Table 8

Spatial Convergence Coefficients for the RMTV Problem on 2D Adaptive Grids

maximum total Density Pressure
# of cells # of cells L

�

1,abs A L� 1,abs A

100x100 3.055E-01 1.377E+16

200x200 4.145E-01 -4.401E-01 4.026E-02 1.806E+16 -3.916E-01 2.268E+15

400x400 5.541E-01 -4.186E-01 4.511E-02 2.291E+16 -3.430E-01 2.934E+15

800x800 6.901E-01 -3.168E-01 8.303E-02 2.760E+16 -2.690E-01 4.570E+15

maximum total Temperature Speed

# of cells # of cells L

�

1,abs A L� 1,abs A

100x100 10000 1.591E+02 6.127E+06

200x200 18548 1.774E+02 -1.576E-01 7.697E+01 6.046E+06 1.920E-02 6.694E+06

400x400 31144 2.044E+02 -2.040E-01 6.019E+01 7.390E+06 -2.896E-01 1.303E+06

800x800 54864 2.247E+02 -1.371E-01 8.985E+01 8.745E+06 -2.428E-01 1.726E+06

�
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In the left column of Figure 20 is the numerical solution for the temperature on the same set of uniform grids

and ending time as in Figure 19. There are two jumps and two plateaus in the temperature. The first jump at =0.90

comes from the leading thermal front. Behind the thermal front is the first plateau where the temperature gradually

increases toward the origin. The second jump at

r

=0.45 marks the location of the following hydrodynamic shock,

and the second plateau is the post-shock region extending to the origin. As the spatial resolution is increased, the

width of the leading temperature edge, which marks the thermal front, becomes thinner and more symmetrical.

The middle column of Figure 20 displays the relative error in the temperature for the same set of uniform grids

and ending time, while the right column of Figure 20 exhibits the relative error in the temperature for adaptive grids.

The cusps, indicative of a change in sign in the relative error, are asymmetrical indicating that the 2D numerical

solution on uniform grids is generating some asymmetries. Like the density solution, the errors for the temperature

solution on adaptive grid solutions are larger than the errors on corresponding uniform grids. For the adaptive meshes,

note the odd refinement pattern near the shock front and the nearly circular cusp at a radius of

r

0.6 cm. Table 7

establishes that the temperature solution on uniform grids converges at roughly a linear rates, while Table 8 shows that

the corresponding solutions on adaptive meshes become worse as the refinement level is increased. This is probably

an artifact of RAGE's adaptive grid refinement algorithm.

In the left column of Figure 21 is the numerical solution for the magnitude of the material velocity vector (the

material speed) for the same set of uniform grids and ending time. Behind the leading thermal front the material speed

stays small with a slight increase as the hydrodynamic shock is approached. The post-shock material speed is a linear

function of position back to the origin. The middle column of Figure 21 displays the relative error in the material

speed for the same set of uniform grids and ending time, while the right column of Figure 21 exhibits the relative error

in the material speed for adaptive grids. For both uniform and adaptive grids the relative errors for the material speed

are larger than the relative errors for either the density or temperature. Like the density and temperature solutions,

the errors for the material speed on adaptive grid solutions are larger than the errors on corresponding uniform grids.

Table 7 demonstrates that the material speed solution on uniform grids converges at roughly a linear rate, while Table

8 shows that the corresponding solution on adaptive meshes is diverging.

Asymmetries in the numerical solutions to the RMTV problem for uniform grids are illustrated in Figure 22.

Across any row is the asymmetry in the mass density, temperature and material speed. Down any column are the

asymmetries on 100x100, 200x200, 400x400, and 800x800 uniform grids at the ending time t=20 sh. The color maps

plot the relative difference between the field at a given radius (

⌥

↵
r2 + z ) and its radially-averaged value. Such plots

essentially give the deviations from spherical symmetry. Each of the fields in Figure 22 displays a strong axis of

symmetry about the diagonal. The density, temperature, and material speed all have their largest asymmetries, relative

to the mean radially average value, at locations near the z-axis. In fact, a time-elapsed movie of the RMTV problem

uncovers the fact that for times t

2

3⇧ 10⇤ � s the heat and shock fronts travel along locations near the10 -axis faster

than for locations along the

z

-axis, yielding an ellipsoidal shaped solution rather than a spherically shaped solution.

Asymmetries in the numerical solution to the RMTV problem for the density on adaptive grids are revealed

in Figure 23. The adaptive grids maximum spatial resolutions are equal to their uniform grid counterparts if they

become refined everywhere. The base grid from which adaptive meshing commenced was a uniform 100x100 grid.

As in Figure 22, the color maps display the relative difference between a field and its radially-averaged value to reveal

r
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asymmetries in the numerical solution. Figure 23 implies that the default criteria for mesh refinement, gradients in the

pressure or mass density, produce significant refinement for RMTV. In general, the asymmetries in the uniform grid

solutions are largely absent in the adaptive grid cases. Like the uniform grid case, however, the shock is asymmetric.
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Figure 20. - Temperature (left), relative error in the temperature on uniform grids (middle), and relative errors in the

temperature on adaptive grids (right) for the RMTV problem on 100x100, 200x200, 400x400, and 800x800 grids (top

to bottom) at t=5.125 10⇤ � s10
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Figure 21. - Speed (left), relative error in the speed on uniform grids (middle), and relative errors in the speed on

adaptive grids (right) for the RMTV problem on 100x100, 200x200, 400x400, and 800x800 grids (top to bottom) at

t=5.125 10⇤ � s10
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Figure 22. - Asymmetries in the numerical solution of the RMTV problem for the density (left), temperature (middle)

and material speed (right) on 100x100, 200x200, 400x400, and 800x800 uniform grids at t=5.125 10⇤ � s.10
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Figure 23. - Asymmetries in the numerical solution of the RMTV problem for the density (left), temperature (middle),

and material speed (right) on adaptive grids with potential effective resolutions of 100x100, 200x200, 400x400, and

800x800 (top to bottom) at t=5.125 10⇤ � s.10
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2.5 The Noh Problem

The Noh problem (Noh 1987) is a standard verification problem for hydrocodes. A gamma-law gas is initialized

with a uniform, radially inward velocity. A shock forms at the origin and propagates outward as the gas stagnates.

This problem tests a code's ability to transform kinetic energy into internal energy, and the ability to follow supersonic

flows. The analytical solution is easy to calculate, and the convergence of the hydrocode solution can be directly

determined. A succinct description of the Noh problem for the Tri-Lab Verification Test Suite, fortran code for

generating solutions, and the spatial and temporal convergence properties are discussed in Timmes, Gisler & Hrbek

(2005) and Timmes, Fryxell & Hrbek (2006).
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Figure 24. - Summary of the Noh problem in 1D. Shown are a 3D representation of the Noh problem (upper left),

numerical and analytical solutions (upper right), relative errors in the density for a variety of uniform grids at a fixed

time-step (lower left), and the relative error in the density for a variety of time-step control values on a fixed uniform

grid.

Figure 24 displays a representative solution on a 800 cell uniform mesh with a time-step controller of tstab=0.2

in the upper right at the final time of t=0.3 s. Analytical and numerical solutions are overlayed for the mass density,

pressure, and material speed. The analytic and numerical solutions generally agree at this level of visual comparison

except near the axes. Shock reflection or shock interactions are often associated with a phenomenon known generically

as wall heating (Noh 1987). RAGE, like most other hydrodynamics codes, produces the anomaly when reflecting a
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shock off a boundary or focusing a shock toward the origin in a convergent geometry (Rider 200). This heating causes

premature stagnation, with densities lower than predicted in the centermost cells. In Figure 19 the central zones has

a stagnation density above 75 g/cc. Further out, matter stagnates at densities of 58-62 g cm� . The correct value is

64 g cm

3

� . The extent to which the anomalous heating occurs depends on the nature of the shock reflection, so that

wall heating may or may not be important for a given problem.

The image in the lower left of Figure 24 exhibits the absolute value of the relative errors in the density for a

variety of uniform grids at the final time of 0.3 s. The parameter tstab sets the time step allowed by the material

speed,

3

� = tstabt · � / (x |vx| + |vy| + |vz ), and determines the time-step in the numerical solution of the Noh

problem. It was set at its default value of 0.2, limiting transport to 20% of a cell's width. The relative cpu cost on

a single processor of increasing the spatial resolution is given. The large errors from the anomalous heating at the

origin is evident. Persistent errors near the right boundary are probably due to the inflow boundary condition. It is

encouraging, however, that between the origin and the shock there is a steady decline in the magnitude of the errors

as the spatial resolution is increased. Figure 24 implies that the density, pressure, and material speed have roughly

linear convergence rates (

|

� 1), mainly due to the large persistent errors from wall-heating and the inflow boundary

at this time-step control setting.

The image in the lower right of Figure 24 shows the absolute value of the relative errors in the temperature for

a variety of time-step control values on a uniform grid of 1600 cells. The relative cpu cost on a single processor of

increasing the temporal resolution is shown. Figure 24 shows that the density has a bimodal convergence rate. For

tstab

⌥

0.2 the convergence rate in the L⌃ 1 norm is near linear, while for smaller values of tstab the convergence rate

is near zero. That is, the L

,abs

norm for the Noh problem appears largely independent of the chosen time-step below a

certain level. For large values of tstab, the Noh test problem violates the recommended accuracy criterion of the code.

In the left column of Figure 25 is the numerical solution for the density on uniform grids of 100x100, 200x200,

400x400, and 800x800 at the final time of t=0.3 s. As the spatial resolution is increased, notice the stripes adjacent

to and parallel to the horizontal axis within the shock region and similarly adjacent to the vertical axis. These grid

aligned features are probably anomalous artifacts of RAGE's hydrodynamics. There is also a broad valley at 45

1

. As

the spatial resolution is increased, there is a distinct sharpening of the shock interface, a narrowing of the diagonal

valley feature and of the grid-aligned stripes. In the finest resolution calculation at bottom left, the pattern is distinctly

that of a herringbone, with a rather broad 45 degree spine (the valley seen at lower resolution has become a hump)

and narrow grid-aligned ribs.

The middle column of Figure 25 is the adaptive mesh analogue of the right column. Dots in the figure represent

the grid pints where the various solutions were computed, the color of the dot indicative of the magnitude of the

density field. White areas indicate regions where there is no grid (i.e., de-refinement has occurred). The base grid

from which refinement began is a uniform 100x100 mesh. The maximum spatial resolution of each adaptive mesh is

equal to its uniform mesh counterpart. Such plots gives a visual indication of the ineffectiveness of adaptive meshing

on the Noh problem. In fact, the adaptive mesh rapidly becomes fully refined at the first cycle of the problem. This is

puzzling because there are no gradients in any physical property at the first cycle. Density, pressure, and temperature

are all uniform throughout the grid. The material speed is also uniform, directed radially inward, but the

⇥

v andr vz
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Figure 25. - Density field on uniform grids (left), density field on adaptive grids (middle) and relative error in the

density on uniform grids (right) for the Noh problem. The spatial resolution is 100x100, 200x200, 400x400, and

800x800 grids (top to bottom) at t=0.3 s
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velocity components separately vary from cell to cell to keep the radial velocity uniform. Examination of the relevant

RAGE modules reveals that the refinement that occurs at cycle zero does indeed depend on the velocity compo-

nents separately. However, the use of adaptive meshing in the Noh problem leads to very deleterious consequences

regardless of (or in spite of) the initial refinement.

The middle column of Figure 25 shows that as the resolution is increased in the adaptive mesh calculations a

surprising and catastrophic anomaly appears on the - axis; a low density bubble straddling the shock. This may be

related to the carbuncle phenomenon that is known to affect some Godunov schemes (Quirk 1994). Since RAGE is

refining everywhere down to the finest allowed cell size on the initial time step, and the results are not identical with

the uniform grid calculations, the problem must arise during de-refinement. Additional analysis reveals the

z

-axis

bubble is seeded at one of the de-refined regions.

The difficulties discussed above were also found in last year's Tri-Lab Verification report (Timmes, Gisler &

Hrbek 2005). Last year, a special version of RAGE (Gittings version 20050818.010) and a new input variable

(rho eps) which relaxes the refinement criteria, allowed the Noh problem to run on 2D adaptive mesh Noh without

producing the carbuncle phenomena. Even with these fixes the total number of cells remained quite large. Apparently

these special fixes haven't become part of the present version of RAGE. In addition, one can object to special fixes

for generic test problems in a hydrodynamics code that strives for generality.

Table 9

Spatial Convergence Coefficients for the Noh Problem on 2D uniform grids

Density Pressure Speed

# of cells L

z

1,abs A L� 1,abs A L� 1,abs A

100x100 2.593E-01 7.532E-02 3.569E-03

200x200 1.329E-01 9.641E-01 2.198E+01 3.872E-02 9.598E-01 6.259E+00 1.826E-03 9.667E-01 3.061E-01

400x400 8.141E-02 7.073E-01 5.638E+00 2.144E-02 8.532E-01 3.558E+00 1.139E-03 6.812E-01 6.744E-02

800x800 6.739E-02 2.727E-01 4.171E-01 1.296E-02 7.264E-01 1.664E+00 8.198E-04 4.742E-01 1.952E-02

The right column of Figure 25 displays the relative error in the density for the same uniform grids as in the

left column. The same features pointed out in density plots in the left column are apparent here, but it is also clear

that the accuracy of the simulation dramatically improves as the resolution is increased. Not only does the shock

thickness decrease, but the overall amplitude of the variations within the shocked region decreases as well. Table

9 demonstrates the global

�

L error norm decreases as the spatial resolution increases, but the rate decreases as the

resolution is increased. In addition, the images aren't symmetric at any spatial resolution, suggesting the underlying

numerical solution isn't axisymmetric. In addition, the relative error in the density is larger for locations near the

1

-axis than for points near thez -axis.

In the left column of Figure 26 is the numerical solution for the pressure on uniform grids of 100x100, 200x200,

400x400, and 800x800 at the final time of t=0.3 s. There is none of the striping, valleys, and herringbone features

that are so prominent in the density fields. This demonstrates the importance of analyzing more than a single field for

a given problem. However, there is a distinct sharpening of the shock interface as the spatial resolution is increased.

r
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Figure 26. - Pressure field on uniform grids (left), pressure field on adaptive grids (middle) and relative error in the

pressure on uniform grids (right) for the Noh problem. The spatial resolution is 100x100, 200x200, 400x400, and

800x800 grids (top to bottom) at t=0.3 s
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The middle column of Figure 26 is the adaptive mesh analogue of the left column. Like the density fields, a low

pressure bubble straddling the shock becomes obvious as the resolution is increased. The white areas between the

origin and shock front at the 400x400 and 800x800 resolutions are regions that have de-refined (no dots to plot). The

right column of Figure 26 displays the relative error in the pressure for the same uniform grids. For these images,

white areas indicate an error of zero, that is, the numerical and analytical solutions agree exactly in the upstream

material There are some grid-aligned structures near the shock front, but they are much less pronounced than they

are for the density field. Table 9 establishes that the convergence rate for the pressure field is slightly sub-linear and

decreasing as the spatial resolution is increased.

Asymmetries in the numerical solutions to the Noh problem are illustrated in Figure 27. Across any row is

the asymmetry in the mass density, and pressure. Down any column are the asymmetries on 100x100, 200x200,

400x400, and 800x800 uniform grids at the ending time t=0.3 s. As in previous sections, the color maps plot the

relative difference between the field at a given radius (
↵

r2 + z ) and its radially-averaged value, yielding images of

the deviations from spherical symmetry. Both the density and pressure fields have a rough axis of symmetry about

the diagonal and have their largest deviations from spherical symmetry near the coordinate axes.

2
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Figure 27. - Asymmetries in the numerical solutions of the Noh problem for the density (left) and pressure (right) on

100x100, 200x200, 400x400, and 800x800 uniform grids at t=1.0.
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2.6 The Sedov Problem

A finite amount of energy is released at the origin at an initial time. The problem of finding self-similar, one-

dimensional solutions for compressible hydrodynamics was considered by Sedov (1959), Taylor (1950), and von

Neumann (1947). Sedov provided the most general closed-form solution, which we employ in the forms considered

by Kamm (2000b). A description of the solution to the Sedov problem, including regularization of the singularities at

the lower limits of integration and fortran code for generating solutions, is given by Timmes, Gisler & Hrbek (2005)

and the spatial-temporal convergence properties are discussed in Timmes, Fryxell & Hrbek (2006).

0 .2 .4 .6 .8 1 1.2
0

20

40

60

80

D
e

n
s
it
y
 (

x
 1

0
 g

/c
m

3
)

P
re

s
s
u

re
 (

x
 6

0
0

 e
rg

/c
m

3
)

S
p

e
e

d
 (

x
 1

0
0

 c
m

/s
)

E
n

e
rg

y
 (

x
 1

0
 e

rg
/g

)

Radius (cm)

Uniform mesh

imxset=480

cstab=0.9

Analytic

Numerical

0 .2 .4 .6 .8 1

10
-4

10
-2

10
0

10
2

D
e

n
s
it
y
 e

rr
o

rs
: 

(e
x
a

c
t 

- 
n

u
m

e
ri
c
a

l)
/e

x
a

c
t

Radius (cm)

ngrid cpu (s)
120 15
240 40
480 128
960 460
1920 1988
3840 9423

Uniform mesh

cstab=0.9

0 .2 .4 .6 .8 1

10
-4

10
-2

10
0

10
2

D
e

n
s
it
y
 e

rr
o

rs
: 

(e
x
a

c
t 

- 
n

u
m

e
ri
c
a

l)
/e

x
a

c
t

Radius (cm)

cstab cpu (s)
0.99 421
0.95 455
0.90 543
0.70 621
0.50 962
0.30 1429
0.10 4737

Uniform mesh

imxset=960

Figure 28. - Summary of the Sedov problem in 1D. Shown are a multiple-frame shadowgraph from the Trident laser

studying the stability of a Taylor-Sedov blast wave (upper left), numerical and analytical solutions (upper right),

relative errors in the density for a variety of uniform grids at a fixed time-step control value (lower left), and the

relative error in the density for a variety of time-step control values on a fixed uniform grids.

Figure 28 displays a representative solution on a 480 cell uniform mesh with a time-step controller of cstab=0.9

in the upper right at the final time of t=1.0 s. The parameter cstab sets the time-step based on the local sound

speed and the material velocity, � = cstabt · � / (x + max(c |vx| + |vy| + |vz )), and determines the time-step in

the numerical solution of the Sedov problem. Initialization of the Sedov problem will generate a spirited discussion

whose antagonists are divided between depositing all the energy into a single central zone or depositing the energy

|
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in a small fixed size region. While the one-cell case is perhaps a more authentic way of initializing the problem, it

is rarely seen in the refereed literature. (Reile & Gehren 1991; Buchler et al 1997; Fryxell et al. 2000; although see

Swesty & Myra 2006). For the 2D results dicussed in this report, the fixed size region initialization was used. Results

for both initialization procedures on 1D grids are discussed in Timmes, Fryxell, & Hrbek (2006). Analytical and

numerical solutions are overlayed for the mass density, pressure, specific internal energy, and material speed. The

analytic and numerical solutions generally agree at a visual level of comparison except near the origin.

The image in the lower left of Figure 28 displays the absolute value of the relative errors in the density for a

variety of uniform grids at the final time of 1.0 s. The relative cpu cost on a single processor of increasing the spatial

resolution is given. The singularity at the origin means T(r � )0 , implying large errors in the specific energy.

For radii

�  
> 0.4 cm, there is a steady decline in the magnitude of the errors between the origin and the shock front as the

spatial resolution is increased. Figure 28 suggests that for

⌥
r > 0.4 cm, the density (and other quantities) have roughly

linear convergence rates (

⌥
� 1). Including the⌥ r < 0.4 cm region leads to smaller convergence rates because of the

persistent errors at the origin. For the fixed region initialization procedure we find, in 1D, the same convergence rates

to within 2 significant figures (Timmes, Fryxell, & Hrbek 2006).

The image in the lower right of Figure 28 exhibits the absolute value of the relative errors in the density for

a variety of time-step control values on a uniform grid of 960 cells. The relative cpu cost on a single processor

of increasing the temporal resolution is shown. Figure 28 implies that the density (and other quantities) have a

convergence rate near zero, which suggests that the spatial discretization may dominate the error budget.

In the left column of Figure 29 is the numerical solution for the density on uniform grids of 120x120, 240x240,

480x480, and 960x960 at the final time of t=1.0 s. As the spatial resolution is increased, the shock front becomes

thinner and better defined. In the viewgraph norm, RAGE appears to do well on the density field despite the

asymmetrical, instability-looking material for radii less than 0.4 cm. This material has a density that is 4 to 5 orders-

of-magnitude smaller than the upstream density and probably doesn't effect the blast wave at a radii of 1.0 cm. The

asymmetries in the density field of 2D Sedov problem are considerably less concerning than in the density field of

the 2D Noh problem. This is a natural consequence of the kinematics: expansions smooth out asymmetries while

compressions exacerbate them. A careful examination of the density field reveals that the shock front has (correctly)

reached 1.0 cm along the

⌥

-axis, but the position of the shock is slightly less than 1.0 cm along ther -axis. That is,

the shock front is asymmetrical.

The middle column of Figure 29 is the adaptive mesh analogue of the left column. Dots in the figure represent

the grid pints where the various solutions were computed, the color of the dot indicative of the magnitude of the

density field. White areas indicate regions where there is no grid (i.e., de-refinement has occurred), while regions of

heavy refinement yield solid color maps. The base grid from which refinement began is a uniform 120x120 mesh.

The maximum spatial resolution of each adaptive mesh is equal to its uniform mesh counterpart. In the 2D Sedov

problem, the adaptive grid refinement works very well, concentrating the computing burden where it is most needed,

at the shock, and in saving considerable computational expense. The adaptive mesh runs for the density field of 2D

Sedov problem don't show hints of the disastrous anomaly that bedevils the density fields in the adaptive runs for the

2D Noh problem. In addition, most of the fine detail in the Rayleigh-Taylor unstable material is largely absent in the

adaptive mesh runs. However, like the uniform grid case, the position of the shock along the

z

-axis is slightly smallerz
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than the location of the shock along the -axis.

The right column of Figure 29 displays the relative error in the density for the same uniform grids as in the left

column. The relative errors are large for radii less that 0.4 cm due to the turbulent-like flows in this region and are

largely independent of spatial resolution. For radii larger than 0.4 cm, the errors are small and become smaller as

the spatial resolution is increased. The cusps, indicative of a change in sign in the relative error, are asymmetrical

indicating that the 2D numerical solution on uniform grids is generating some asymmetries. Note that the errors at

the shock front for locations near the

r

-axis are larger than the relative errors for locations near thez -axis. This is

another indication that the shock along the

r

-axis lags the shock along thez -axis.

Table 10 details the convergence properties for the 2D Sedov problem on uniform grids, and Table 11 does

the same for adaptive grids. These tables indicate the density has a convergence rate

r

� 0.5 that appears to be

decreasing as the spatial resolution increases. It is encouraging that the convergence indices are roughly the same for

both uniform and adaptive grids.

⌥
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Table 10

Spatial Convergence Coefficients for the Sedov Problem on 2D Uniform Grids

Density Pressure

# of cells L1,abs A L� 1,abs A

120x120 9.812E-02 2.137E-03

240x240 6.263E-02 6.478E-01 1.938E+00 1.376E-03 6.350E-01 3.981E-02

480x480 3.848E-02 7.027E-01 2.592E+00 8.385E-04 7.149E-01 6.079E-02

960x960 2.627E-02 5.506E-01 1.042E+00 5.614E-04 5.789E-01 2.690E-02

Internal Energy Speed

# of cells L

�

1,abs A L� 1,abs A

120x120 1.403E-01 6.220E-03

240x240 1.021E-01 4.591E-01 1.162E+00 3.750E-03 7.302E-01 1.795E-01

480x480 8.591E-02 2.486E-01 3.811E-01 2.435E-03 6.230E-01 1.017E-01

960x960 9.411E-02 -1.315E-01 3.908E-02 2.041E-03 2.546E-01 1.119E-02

Table 11

Spatial Convergence Coefficients for the Sedov Problem on 2D Adaptive Grids

maximum total Density Pressure

# of cells # of cells L

�

1,abs A L� 1,abs A

120x120 14400 9.812E-02 2.137E-03

240x240 22940 9.996E-02 -2.671E-02 8.677E-02 2.143E-03 -3.897E-03 2.099E-03

480x480 31996 7.558E-02 4.034E-01 8.473E-01 1.657E-03 3.714E-01 1.533E-02

960x960 52380 5.921E-02 3.521E-01 6.232E-01 1.386E-03 2.576E-01 7.755E-03

maximum total Internal Energy Speed

# of cells L

�

1,abs A L� 1,abs A

120x120 14400 1.403E-01 6.220E-03

240x240 22940 9.044E-02 6.336E-01 2.596E+00 5.901E-03 7.588E-02 8.822E-03

480x480 31996 7.359E-02 2.975E-01 4.375E-01 5.112E-03 2.073E-01 1.770E-02

960x960 52380 6.916E-02 8.943E-02 1.257E-01 4.596E-03 1.536E-01 1.283E-02

�
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Figure 29. - Density field on uniform grids (left), density field on adaptive grids (middle) and relative error in the

density on uniform grids (right) for the Sedov problem. The spatial resolution is 120x120, 240x240, 480x480, and

960x960 grids (top to bottom) at t=1.0 s
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In the left column of Figure 30 is the numerical solution for the pressure on uniform grids of 120x120, 240x240,

480x480, and 960x960 at the final time of t=1.0 s. In the pressure field, there are none of the fluid instabilities

signatures that are so prominent in the density fields. However, the fact the shock along the -axis hasn't reached the

correct value of 1.0 cm is more readily visible in the pressure field. The middle column of Figure 30 is the adaptive

mesh analogue of the left column. The images demonstrate that as the spatial resolution is increased the pressure along

the

z

-axis becomes larger (more white) that the pressure along thez axis. In fact, at the highest spatial resolutions the

pressure along the shock front is asymmetrical. The right column of Figure 30 displays the relative error (compared

to the analytic solution) in the pressure for uniform grids. The anomalous strengthening of the pressure for locations

near the

r

-axis is evident. These are probably anomalous artifacts of RAGE's hydrodynamics.

Figure 31 gives the magnitude of the material velocity vector in the same format as for the density fields (Figure

29) and pressure field (Figure 30). The material speeds display the fluid instability features present in the density

fields. Like the density and pressure fields, there are numerous asymmetrical cusps and the shock front fails to reach

the correct position along the

z

-axis (darker shades in the relative error).

These difficulties in the Sedov test problem were only hinted at in last year's Tri-Lab Verification report (Timmes,

Gisler & Hrbek 2005) because they only examined the density field. This demonstrates the importance of analyzing

more than a single field for a given problem.

Asymmetries in the numerical solutions to the Sedov problem are illustrated in Figure 32 for uniform grids and

in Figure 33 for adaptive grids. Across any row is the asymmetry in the mass density, pressure, and material speed.

Down any column are the asymmetries on 120x120, 240x240, 480x480, and 960x960 uniform grids at the ending

time t=1.0 s. As in previous sections, the color maps plot the relative difference between the field at a given radius

(

z

↵
r2 + z ) and its radially-averaged value. This yields one measure of the deviations from spherical symmetry.

Note this is strictly a symmetry test of the numerical solution; the analytical solution doesn't enter the analysis. All

the fields show the shock not reaching the correct location along the

2

-axis by having a larger deviation from the

radially-average value.

z



Chapter 2.6 - Sedov Page 56 LA-UR-06-6697

Figure 30. - Pressure field on uniform grids (left), pressure field on adaptive grids (middle) and relative error in the

pressure on uniform grids (right) for the Sedov problem. The spatial resolution is 120x120, 240x240, 480x480, and

960x960 grids (top to bottom) at t=1.0 s
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Figure 31. - Material speed on uniform grids (left), material speed on adaptive grids (middle) and relative error

in the material speed on uniform grids (right) for the Sedov problem. The spatial resolution is 120x120, 240x240,

480x480, and 960x960 grids (top to bottom) at t=1.0 s
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Figure 32. - Asymmetries in the numerical solution of the Sedov problem for the density (left), pressure (middle), and

material speed (right) on 120x120, 240x240, 480x480, and 960x960 uniform grids (top to bottom) at t=1.0 s.
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Figure 33. - Asymmetries in the numerical solution of the Sedov problem for the density (left), pressure (middle),

and material speed (right) on adaptive grids with potential maximum resolutions of 120x120, 240x240, 480x480, and

960x960 (top to bottom) at t=1.0 s.
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3. Conclusions and Future Directions

This report has described a verification analysis on uniform and adaptive meshes for multi-dimensional versions

of the problems in the Tri-Lab Verification Test Suite. Previous efforts along these lines considered only the Noh

and Sedov test problems in 2D on uniform (Kamm & Kirkpatrick 2004) and adaptive (Timmes, Gisler & Hrbek

2005) meshes. In general, RAGE shows a high degree of symmetry and fidelity to the underlying physics for test

problems in slab geometries. All of the test problems run in axisymmetric geometries have problems with either large

asymmetries or outright anomalies, particularly for locations near the -axis. The Cog-8 problem has large errors for

locations near the

z

-axis, the RMTV problem shows larger errors on adaptive grids than on the corresponding uniform

grids, the Noh problem has a disastrous low density bubble near the

z

-axis on adaptive meshes, and the shock fails to

reach the correct location along the

z

-axis for the Sedov problem because of a high pressure bubble.

The computational efficiency gained by using adaptive grids instead of uniform grids is typically about a factor

of twenty for 4-6 levels of mesh refinement for most 2D versions of the problems in the Tri-Lab Verifications Test

Suite. This efficiency gain, however, isn't generally accompanied by a corresponding reduction in the global error

norm between the numerical and analytical solutions when the default AMR settings are used. For several Tri-Lab

test problems (e.g., RMTV) the relative errors on adaptive grids are larger than the errors on corresponding uniform

grids.

The efforts that led to this report spawned a new project to perform a daily execution of an automated spatial-

temporal verification analysis for 2D versions of the Tri-Lab Verification Test Suite. Generating numerical solutions,

comparing the numerical and analytical solutions, performing the verification analysis, and plotting the key results has

become part of Code Project A's nightly regression testing. In addition to being incorporated into the daily regression

tests, all the analytic solution codes, input decks, and `gold' results are now archived on SourceForge.

During the coarse of these investigations a new initialization module for the Reinicke Meyer-ter-Vehn problem

was developed in tandem with Mike Clover (SAIC). This new module permits running the RMTV test problem

in 2D and 3D for the first time. The new module also provides an accurate and smooth initial state, which is of

particular importance for convergence studies on adaptive meshes. A new analytic solution for the two-dimensional

cell-averaged solution of the Coggeshall #8 problem (Timmes & Clover 2006) was discovered. The new solution

reduces the global error norm and smooths the error fields. This new solution is implemented in RAGE. In addition,

Livermore's efforts to deploy the Tri-Lab Verification Test Suite on their codes include the use of four of our analytic

solution codes (Su & Olson, Cog8, RMTV, and Mader).

New test problems that exercise multi-material and/or multi-temperature solutions in an extension of the Tri-Lab

Verification Test Suite are needed and will be discussed with Livermore and Sandia at NECDC|06. As new analytic

test problems are added to the Tri-Lab Test Suite, conducting the verification analysis on multi-dimensional versions

of the test problems must be encouraged. In parallel, calculation verification procedures for complex physics problems

that admit no exact solution must be encouraged to advance. The standard approach to conducting verification analysis

where no exact solution exists presents two significant limitations. First, computational solutions that converge by

oscillation are not calculable, and second, the technique is limited to a simple error model. An improvement to the

current method is needed. Calculation verification offers a rigorous procedure for complex physics problems that don't

admit an exact solution (Smitherman, Kamm & Brock 2005; Tippett & Timmes 2006). In calculation verification, the

z
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absolute value of the pointwise error is calculated, allowing for local oscillatory convergence. The equations are then

solved using Newton's method for the convergence constants, discretization errors, and an estimated exact solution

simultaneously. This procedure allows for a more complex error model if desired.

Questions of analytic test problem relevance to realistic applications can be addressed by (1) creating new metrics

from the existing Tri-Lab Test Suite, (2) constructing new analytic test problems that exercise multi-material and/or

multi-temperature solutions, (3) developing calculation verification into a robust tool capable of performing well on

complicated, multi-physics problems, and (4) integrating analyses of the numerical errors from spatial and temporal

discretizations into quantification of margins and uncertainty (QMU) studies.
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