
So#ware	
Ecosystems:	
Spreading	the	
work	around		

	

James	Howison	
School	of	Informa=on	

University	of	Texas	at	Aus=n	
	

(based	in	part	on	joint	work	with	Jim	Herbsleb	at	Carnegie	Mellon)	

This	material	is	based	upon	work	supported	by	the	US	Na=onal	Science	Founda=on	under	
Grant	Nos.	SMA-	1064209	(SciSIP),	OCI-0943168	(VOSS)	and	ACI-145348	(CAREER).	

h\ps://www.flickr.com/photos/mrhayata/6933963596	



Reuse	

•  Digital	informa=on	can	be	copied	
– High	design	costs	
– Ultra-low	instan=a=on	costs	
– Cheap	network	distribu=on	

•  Implica=ons:	
– “Write	once,	run	anywhere”	
– Everyone	gets	a	car!	

@jameshowison	



Recombina=on	

•  Digital	informa=on	is	very	flexible	
– Patched	
– Wrapped	
– Extended	
– Recombined	

•  Re-combinability	is	great	for	
innova=on	
– Lots	of	new	ways	to	do	things	
– But	a	s=ng	in	the	tail?	

@jameshowison	

h\ps://www.flickr.com/
photos/44551921@N04/	



Today’s	ques=ons	

1. How	does	recombina=on	make	
so#ware	work	harder?	

2. What	sort	of	work	needs	to	be	done	
to	cope?	

3. How	do	different	ways	of	working	
spread	that	work	around?	

@jameshowison	



How	do	scien=sts	use	so#ware?	

v 2.0.1

v 2.0.1

v 2.2.8

Workflow

Software assemblage

Dependecies

Edwards	and	Batcheller,	Deelman,	Bietz	and	Lee,	
Segal,	Olson	and	Olson,	De	Roure	and	Gobels,	
Ribes	and	Finholt,	Howison	and	Herbsleb	

@jameshowison	



Re-anima=ng	assemblages	

•  Scien=sts	pull	an	assemblage	together,	“get	
the	plots”	and	o#en	then	leave	it,	o#en	for	
months	or	years.	

•  When	they	return	they	return	to	extend;	to	
use	the	so#ware	assemblage	for	new	
purposes,	for	new	science,	not	simply	to	
replicate.	

@jameshowison	



But	the	world	changes	…	

•  Reanima=on	encounters	change	in	the	so#ware	
ecosystem 		
– Updated	packages,	New	packages,	New	interfaces	

•  And	not	just	in	the	immediate	components	of	a	
workflow,	but	in	the	dependencies	and	
complements.	

•  This	work	is	echoed	at	component	producers,	
since	components	are	themselves	assemblages.	

@jameshowison	



@jameshowison	

h\ps://www.flickr.com/photos/mrhayata/6933963596	



What	work	holds	a	so#ware	
ecosystem	together	(if	anything)?	

•  Sensing	work		
– knowing	how	workflows/so#ware	“out	there”	are	
changing	

•  Adjustment		
– making	appropriate	changes	to	account	for	
changing	surroundings	

•  Synchroniza=on		
– ensuring	that	changes	in	mul=ple	components	
make	sense	together,	avoiding	cascades.	

@jameshowison	



Holding	things	together	is	hard	work	

But	you	can’t	unlock	the	poten=al	of	cyberinfrastructure	without	it	

@jameshowison	



How	is	this	work	spread	around?	

•  If	your	so#ware	neighborhood	works	at	all	
then	this	work	is	being	done,	by	someone.	In	
some	fashion,	not	necessarily	efficiently.	

•  How	does	this	work	happen:	
– What	do	we	do	within	our	project?	
– What	work	do	we	send	to	our	users?	
– What	work	do	we	send	to	neighboring	projects?	

@jameshowison	



What	work	happens	within	our	project?	

Challenges		
•  Knowing	what	each	other	

intended	or	intends	
•  Choosing	dependencies	with	care	

and	monitoring	those	projects	
•  Synchronizing	our	work	internally	
•  Knowing	who	is	doing	the	

adjustment	work	to	bring	things	
into	alignment	

Techniques	
•  “Atomic	commits”	

–  Small,	frequent	contribu=ons	
easier	to	follow	than	large	
“code	bombs”	

•  Test	suites	communicate	
inten=ons		
–  A	failed	integra=on	test	is	a	

misunderstanding	
•  Con5nuous	integra5on	can	

help	monitor	dependencies	
–  	Pull	new	versions	of	

dependencies	and	
complements	

@jameshowison	



What	work	do	we	send	to	our	users?	

Challenges		
•  How	do	we	know:	

–  What	users	do	with	our	code?	
–  What	tools	they	combine	it	

with?	
–  How	and	how	o#en	they	adjust	

our	code	(inc.	wrappers,	pre-
processing)?	

–  Where	they	go	for	help?	
–  Do	we	talk	to	both	users	and	

their	sys	admins?	
•  How	do	we	shape	our	users	

use?	
–  Can’t	control	them,	but	we	can	

guide	them.	

Techniques	
•  Registra=on	of	users	
•  Build	use	repor=ng	into	our	

so#ware	(e.g.,	Thain,	2006)	
including	repor=ng	
complements.	

•  Know	“lead-users”	but	know	
longer	tail	as	well.	

•  Concentrate,	monitor,	and	
curate	help	discussions.	

•  Documenta=on	can	nudge	
user	behavior.	

@jameshowison	



What	work	do	we	send		
to	neighboring	projects?	

Challenges		
•  Know	who	we	depend	on	(our	

upstream)	
•  Know	who	depends	on	us	(our	

downstream)		
•  How	do	they	adjust	to	our	

changes?	Can	we	synchronize	
releases?	

•  Is	our	use	of	other	
components	visible?	

•  Can	we	pass	our	adjustments	
upstream	(saving	others	
=me)?	

Techniques	
•  Be	part	of	upstream	and	

downstream	projects	(Read	
lists,	a\end	events,	work	
with	their	code).	Include	
others	in	your	events.	

•  Can	your	adjustment	work	
be	passed	upstream?	

•  Are	we	the	bug	reporters	
that	we’d	like	to	have?	

@jameshowison	



Different	“organiza=onal	forms”	
spread	the	work	out	differently	

1.  The	grant	startup	
2.  The	“service	center”	
3.  The	“merely	open”	project	
4.  The	ecosystem	player	

@jameshowison	



The	grant	startup	
•  A	new	grant	to	a	lab	
•  An	internal	team,	low	external	transparency	(like	a	
“stealth	mode”	VC-funded	startup)	

•  Experimen=ng,	not	wan=ng	to	bother	others	un=l	“it	
works”	

•  From	an	ecosystem	perspec=ve,	this	can	be	very	much	
like	one	big	code	dump,	pushing	sensing,	adjustment,	
and	synchroniza=on	onto	end	users	and	other	projects.		

•  Two	key	ac=ons:		
–  Iden=fy	poten=al	users	and	know	what	else	they	use	
–  Exchange	people	with	dependencies	and	complements		

@jameshowison	



The	“service	center”	

•  “We’re	funded	to	do	the	work	for	our	users”	
•  Characteris=cs:	
– One	way	code	membrane	(we	release,	but	don’t	take	
contribu=ons)	

– A	Helpdesk	(individual	=ckets	solved	in	private)	
•  But:	the	team	doesn’t	scale	to	all	the	sensing,	
adjustment	and	synchroniza=on	needed	

•  Key	ac=ons:	
–  Enroll	our	users,	accept	and	learn	from	patches	
–  Take	support	out	into	public,	leveraging	“ac=ve	users”	

@jameshowison	



The	“passively	open”	project	
•  Projects	have	all	the	trappings	of	open	source	

–  Open	source	license	
–  Hosted	on	github,	maybe	even	Jenkins	
–  Core	team	might	even	work	in	public	

•  Outside	contribu=ons	are	possible,	but	don’t	o#en	
occur	

•  Openness	at	least	means	you	can	be	“sensed”	by	
others,	but	that	puts	the	work	on	others.	

•  Key	ac=ons:	
–  Go	from	passive	to	ac=vely	open,	encouraging	
contribu=ons	

–  Sense	how	the	code	is	used	and	what	it	is	combined	with	

@jameshowison	



The	ecosystem	player	
•  Funded	to	build	community	and	to	cul=vate	the	work	
of	others	

•  Knows	their	“ecosystem”	neighbors	
•  Ac=vely	senses	how	users	use	their	code	(e.g.,	ac=vely	
cura=ng	help	discussions	where	ever	they	occur)	

•  Has	dense	project	co-memberships	(upstream	and	
downstream)	

•  Works	to	synchronize	releases	with	neighbors.	
•  Key	ac=ons:	

–  Document	what	you	do	so	that	others	can	learn	
–  Document	the	value	of	what	you	do!	

@jameshowison	



Takeaways	
•  Recombina=on	is	a	key	affordance	of	so#ware,	and	it	
means	that	projects	exist	in	a	“neighborhood”	of	
direct	and	indirect	dependencies	

•  Over	=me	dependencies	lead	to	new	kinds	of	work	
–  Sensing:	knowing	what	is	nearby	and	how	it	is	changing	
–  Adjus5ng:	changing	to	account	for	nearby	changes	
–  Synchronizing:	gathering	adjustments	in	=me	to	avoid	
cascades	

•  If	your	neighborhood	works,	someone	is	doing	that	
work.		

•  The	way	your	project	organizes	its	work	spreads	this	
work	around	your	neighborhood.	

@jameshowison	



Suggested	sessions	
•  Who	in	this	room	is	in	your	neighborhood?	Grab	them	and	

talk	about	who	does	sensing,	adjustment	and	
synchroniza=on?	

•  Is	there	scope	for	a	so#ware	distribu=on	in	our	
neighborhood?	

•  Tell	someone	a	story	of	epic	adjustment	work	that	you	did.		
–  Could	it	have	been	avoided?	Could	it	have	been	shared	
with	others	to	avoid	them	doing	it?	Did	you	publicize	it?	

•  Map	your	neighborhood;	especially	complementary	packages.	
•  Brainstorm	how	to	sense	users	be\er	

–  Do	we	concentrate	and	curate	our	users’	help	discussions?	
Do	they	stackexchange?	Can	we	be	more	ac=ve	there?	

•  How	could	a	funded	So#ware	Ins=tute	help?	
	

@jameshowison	



References	
Batcheller,	A.	L.	(2011).	Requirements	Engineering	in	Building	Climate	Science	So7ware.	(Ph.D.	Disserta=on).	University	of	Michigan.	Retrieved	
from	h\p://deepblue.lib.umich.edu/handle/2027.42/86438	
Bietz,	M.	J.,	Baumer,	E.	P.,	&	Lee,	C.	P.	(2010).	Synergizing	in	Cyberinfrastructure	Development.	Computer	Supported	Coopera;ve	Work,	
19(3-4),	245–281.	h\p://doi.org/10.1007/s10606-010-9114-y	
Borgman,	C.	L.,	Wallis,	J.	C.,	&	Mayernik,	M.	S.	(2012).	Who’s	Got	the	Data?	Interdependencies	in	Science	and	Technology	Collabora=ons.	
Computer	Supported	Coopera;ve	Work	(CSCW),	21(6),	485–523.	h\p://doi.org/10.1007/s10606-012-9169-z	
Brown,	D.	A.,	Brady,	P.	R.,	Dietz,	A.,	Cao,	J.,	Johnson,	B.,	&	McNabb,	J.	(2007).	A	Case	Study	on	the	Use	of	Workflow	Technologies	for	Scien=fic	
Analysis:	Gravita=onal	Wave	Data	Analysis.	In	I.	J.	Taylor,	E.	Deelman,	D.	B.	Gannon,	&	M.	Shields	(Eds.),	Workflows	for	e-Science	(pp.	39–59).	
London:	Springer.	Retrieved	from	h\p://link.springer.com/chapter/10.1007/978-1-84628-757-2_4	
Edwards,	P.	N.	(2010).	A	vast	machine	computer	models,	climate	data,	and	the	poli;cs	of	global	warming.	Cambridge,	Mass.:	MIT	Press.	
Retrieved	from	h\p://site.ebrary.com/id/10424687	
Edwards,	P.	N.,	Mayernik,	M.	S.,	Batcheller,	A.	L.,	Bowker,	G.	C.,	&	Borgman,	C.	L.	(2011).	Science	fric=on:	Data,	metadata,	and	collabora=on.	
Social	Studies	of	Science,	41(5),	667–690.	h\p://doi.org/10.1177/0306312711413314	
Goble,	C.,	De	Roure,	D.,	&	Bechhofer,	S.	(2013).	Accelera=ng	Scien=sts’	Knowledge	Turns.	In	A.	Fred,	J.	L.	G.	Dietz,	K.	Liu,	&	J.	Filipe	(Eds.),	
Knowledge	Discovery,	Knowledge	Engineering	and	Knowledge	Management	(pp.	3–25).	Springer	Berlin	Heidelberg.	
Howison,	J.,	Deelman,	E.,	McLennan,	M.	J.,	Silva,	R.	F.	da,	&	Herbsleb,	J.	D.	(2015).	Understanding	the	scien=fic	so#ware	ecosystem	and	its	
impact:	Current	and	future	measures.	Research	Evalua;on,	rvv014(First	published	online:	July	27,	2015),	17	Pages.	h\p://doi.org/10.1093/
reseval/rvv014	
Howison,	J.,	&	Herbsleb,	J.	D.	(2011).	Scien=fic	so#ware	produc=on:	incen=ves	and	collabora=on.	In	Proceedings	of	the	ACM	Conference	on	
Computer	Supported	Coopera;ve	Work	(pp.	513–522).	Hangzhou,	China.	h\p://doi.org/10.1145/1958824.1958904	
Howison,	J.,	&	Herbsleb,	J.	D.	(2013).	Incen=ves	and	Integra=on	in	Scien=fic	So#ware	Produc=on.	In	Proceedings	of	the	2013	Conference	on	
Computer	Supported	Coopera;ve	Work	(pp.	459–470).	New	York,	NY,	USA:	ACM.	h\p://doi.org/10.1145/2441776.2441828	
Howison,	J.,	&	Herbsleb,	J.	D.	(2014).	The	sustainability	of	scien;fic	so7ware	produc;on.	Working	Paper,	University	of	Texas	at	Aus=n.	
Lee,	C.	P.,	Bietz,	M.	J.,	Derthick,	K.,	&	Paine,	D.	(2012).	A	Sociotechnical	Explora=on	of	Infrastructural	Middleware	Development.	Presented	at	
the	CSCW.	
Segal,	J.	(2009).	So#ware	Development	Cultures	and	Coopera=on	Problems:	A	Field	Study	of	the	Early	Stages	of	Development	of	So#ware	for	
a	Scien=fic	Community.	Computer	Supported	Coopera;ve	Work	(CSCW),	18(5),	-606.	h\p://doi.org/10.1007/s10606-009-9096-9	
Segal,	J.,	&	Morris,	C.	(2008).	Developing	Scien=fic	So#ware.	IEEE	So7ware,	25(4),	20.	
	

@jameshowison	


