Software
Ecosystemes:
Spreading the
work around

)

] ".-/‘ 3

>
ﬂ’ :

f
ot

“§‘1' ‘1 r" A

y

‘l A .
i G
A4

o
R e
¥

¢

Try.
/F}-,
¥

»
Vo

¥

B

V72
2 50 &

"‘:;- ‘ 2 # 3 -
https://www.flickr.com/photos/mrhayata/6933963596

James Howison
School of Information
University of Texas at Austin

(based in part on joint work with Jim Herbsleb at Carnegie Mellon)

This material is based upon work supported by the US National Science Foundation under
Grant Nos. SMA- 1064209 (SciSIP), OCI-0943168 (VOSS) and ACI-145348 (CAREER).

@jameshowison

Reuse

* Digital information can be copied
— High design costs
— Ultra-low instantiation costs
— Cheap network distribution
* Implications:
— “Write once, run anywhere”
— Everyone gets a car!

@jameshowison

Recombination

* Digital information is very flexible
— Patched
— Wrapped
— Extended
— Recombined

 Re-combinability is great for
Innovation
— Lots of new ways to do things
— But a sting in the tail?

https://www.flickr.com/
photos/44551921@N04/

Today’s questions

1. How does recombination make
software work harder?

2. What sort of work needs to be done
to cope?

3. How do different ways of working
spread that work around?

How do scientists use software?

Software assemblage

Workflow

——p(v 2.0.1

Dependecies

v 2.0.1

v2.2.8

Edwards and Batcheller, Deelman, Bietz and Lee,
Segal, Olson and Olson, De Roure and Gobels,

Ribes and Finholt, Howison and Herbsleb

Re-animating assemblages

e Scientists pull an assemblage together, “get
the plots” and often then leave it, often for
months or years.

* When they return they return to extend; to
use the software assemblage for new
purposes, for new science, not simply to
replicate.

But the world changes ...

 Reanimation encounters change in the software

ecosystem
— Updated packages, New packages, New interfaces

 And not just in the immediate components of a
workflow, but in the dependencies and
complements.

* This work is echoed at component producers,
since components are themselves assemblages.

https://www.flickr.com/photos/mrhayata/6933963596

What work holds a software
ecosystem together (if anything)?

* Sensing work

— knowing how workflows/software “out there” are
changing

* Adjustment

— making appropriate changes to account for
changing surroundings

* Synchronization

— ensuring that changes in multiple components
make sense together, avoiding cascades.

Holding things together is hard work

But you can’t unlock the potential of cyberinfrastructure without it

How is this work spread around?

* |f your software neighborhood works at all
then this work is being done, by someone. In
some fashion, not necessarily efficiently.

* How does this work happen:
— What do we do within our project?
— What work do we send to our users?
— What work do we send to neighboring projects?

What work happens within our project?

Challenges

Knowing what each other
intended or intends

Choosing dependencies with care
and monitoring those projects

Synchronizing our work internally

Knowing who is doing the
adjustment work to bring things
into alignment

Techniques

“Atomic commits”

— Small, frequent contributions
easier to follow than large

“code bombs”

Test suites communicate
intentions

— Afailed integration test is a
misunderstanding
Continuous integration can
help monitor dependencies
— Pull new versions of

dependencies and
complements

What work do we send to our users?

Challenges Techniques
* How do we know: * Registration of users
— What users do with our code? .

Y Build use reporting into our
— What tools they combine it software (e.g., Thain, 2006)

with?) :)
— How and how often they adjust including reporting
our code (inc. wrappers, pre- complements.
processing)? * Know “lead-users” but know

— Where they go for help?

longer tail as well.
— Do we talk to both users and

their sys admins? * Concentrate, monitor, and
 How do we shape our users curate help discussions.
use? Documentation can nudge
— Can’t control them, but we can user behavior.

guide them.

What work do we send
to neighboring projects?

Challenges

Know who we depend on (our
upstream)

Know who depends on us (our
downstream)

How do they adjust to our
changes? Can we synchronize
releases?

Is our use of other
components visible?

Can we pass our adjustments
upstream (saving others
time)?

Techniques

Be part of upstream and
downstream projects (Read
lists, attend events, work
with their code). Include
others in your events.

Can your adjustment work
be passed upstream?

Are we the bug reporters
that we’d like to have?

W

- =4 4 -

Different “organizational forms”
spread the work out differently

ne grant startup
ne “service center”
ne “merely open” project

ne ecosystem player

The grant startup

A new grantto a lab

An internal team, low external transparency (like a
“stealth mode” VC-funded startup)

Experimenting, not wanting to bother others until “it
works”

From an ecosystem perspective, this can be very much
like one big code dump, pushing sensing, adjustment,
and synchronization onto end users and other projects.

Two key actions:

— ldentify potential users and know what else they use
— Exchange people with dependencies and complements

The “service center”

“We're funded to do the work for our users”

Characteristics:

— One way code membrane (we release, but don’t take
contributions)

— A Helpdesk (individual tickets solved in private)

But: the team doesn’t scale to all the sensing,
adjustment and synchronization needed

Key actions:

— Enroll our users, accept and learn from patches
— Take support out into public, leveraging “active users”

The “passively open” project

Projects have all the trappings of open source
— Open source license

— Hosted on github, maybe even Jenkins

— Core team might even work in public

Outside contributions are possible, but don’t often
occur

Openness at least means you can be “sensed” by
others, but that puts the work on others.
Key actions:

— Go from passive to actively open, encouraging
contributions

— Sense how the code is used and what it is combined with

The ecosystem player

Funded to build community and to cultivate the work
of others

Knows their “ecosystem” neighbors

Actively senses how users use their code (e.g., actively
curating help discussions where ever they occur)

Has dense project co-memberships (upstream and
downstream)

Works to synchronize releases with neighbors.

Key actions:
— Document what you do so that others can learn
— Document the value of what you do!

Takeaways

 Recombination is a key affordance of software, and it
means that projects exist in a “neighborhood” of

direct and indirect dependencies
* Over time dependencies lead to new kinds of work
— Sensing: knowing what is nearby and how it is changing
— Adjusting: changing to account for nearby changes

— Synchronizing: gathering adjustments in time to avoid
cascades

* If your neighborhood works, someone is doing that
work.

* The way your project organizes its work spreads this
work around your neighborhood.

Suggested sessions

Who in this room is in your neighborhood? Grab them and
talk about who does sensing, adjustment and
synchronization?

Is there scope for a software distribution in our
neighborhood?

Tell someone a story of epic adjustment work that you did.

— Could it have been avoided? Could it have been shared
with others to avoid them doing it? Did you publicize it?

Map your neighborhood; especially complementary packages.
Brainstorm how to sense users better

— Do we concentrate and curate our users’ help discussions?
Do they stackexchange? Can we be more active there?

How could a funded Software Institute help?

@jameshowison

References

Batcheller, A. L. (2011). Requirements Engineering in Building Climate Science Software. (Ph.D. Dissertation). University of Michigan. Retrieved
from http://deepblue.lib.umich.edu/handle/2027.42/86438

Bietz, M. J., Baumer, E. P, & Lee, C. P. (2010). Synergizing in Cyberinfrastructure Development. Computer Supported Cooperative Work,
19(3-4), 245-281. http://doi.org/10.1007/s10606-010-9114-y

Borgman, C. L., Wallis, J. C., & Mayernik, M. S. (2012). Who's Got the Data? Interdependencies in Science and Technology Collaborations.
Computer Supported Cooperative Work (CSCW), 21(6), 485-523. http://doi.org/10.1007/5s10606-012-9169-z

Brown, D. A., Brady, P. R, Dietz, A,, Cao, J., Johnson, B., & McNabb, J. (2007). A Case Study on the Use of Workflow Technologies for Scientific
Analysis: Gravitational Wave Data Analysis. In . J. Taylor, E. Deelman, D. B. Gannon, & M. Shields (Eds.), Workflows for e-Science (pp. 39-59).
London: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-84628-757-2_4

Edwards, P. N. (2010). A vast machine computer models, climate data, and the politics of global warming. Cambridge, Mass.: MIT Press.
Retrieved from http://site.ebrary.com/id/10424687

Edwards, P. N., Mayernik, M. S., Batcheller, A. L., Bowker, G. C., & Borgman, C. L. (2011). Science friction: Data, metadata, and collaboration.
Social Studies of Science, 41(5), 667—690. http://doi.org/10.1177/0306312711413314

Goble, C., De Roure, D., & Bechhofer, S. (2013). Accelerating Scientists’ Knowledge Turns. In A. Fred, J. L. G. Dietz, K. Liu, & J. Filipe (Eds.),
Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 3—25). Springer Berlin Heidelberg.

Howison, J., Deelman, E., McLennan, M. J., Silva, R. F. da, & Herbsleb, J. D. (2015). Understanding the scientific software ecosystem and its
impact: Current and future measures. Research Evaluation, rvwv014(First published online: July 27, 2015), 17 Pages. http://doi.org/10.1093/
reseval/rvv014

Howison, J., & Herbsleb, J. D. (2011). Scientific software production: incentives and collaboration. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (pp. 513-522). Hangzhou, China. http://doi.org/10.1145/1958824.1958904

Howison, J., & Herbsleb, J. D. (2013). Incentives and Integration in Scientific Software Production. In Proceedings of the 2013 Conference on
Computer Supported Cooperative Work (pp. 459-470). New York, NY, USA: ACM. http://doi.org/10.1145/2441776.2441828

Howison, J., & Herbsleb, J. D. (2014). The sustainability of scientific software production. Working Paper, University of Texas at Austin.

Lee, C. P., Bietz, M. J., Derthick, K., & Paine, D. (2012). A Sociotechnical Exploration of Infrastructural Middleware Development. Presented at
the CSCW.

Segal, J. (2009). Software Development Cultures and Cooperation Problems: A Field Study of the Early Stages of Development of Software for
a Scientific Community. Computer Supported Cooperative Work (CSCW), 18(5), -606. http://doi.org/10.1007/s10606-009-9096-9

Segal, J., & Morris, C. (2008). Developing Scientific Software. IEEE Software, 25(4), 20.

