Cyberinfrastructure Uptake *Some observations over 20 years*

Nancy Wilkins-Diehr San Diego Supercomputer Center wilkinsn@sdsc.edu

Stated goals of this workshop I hope to touch on two

- Serve as a focused forum for PIs to share technical information.
- Explore innovative topics emerging within software communities.
- Discuss emerging best practices across the software projects.
- Stimulate thinking on new ways of achieving software sustainability.
- Gather the shared experiences in an online web portal.
 Science Gateways

What do most developers have in common? They'd like to see their software used

- Why does software get used?
 - Because it serves a need it's dead easy to use
 - Because of force
 - Because of desperation
 - Because of trust
 - Through science gateways

My experiences Early 1990s

- Cray supercomputers
 XMP, YMP, C90, T90
- Easy to convince people to to use CI
 - There weren't many people and there wasn't much CI
- Not a lot of opportunity cost
 - Great libraries and compilers
 - Codes typically ran much faster with a simple recompile on a vector supercomputer Science Gateways

My experiences Late 1990s

- Parallel computing, grid computing
 - CI becomes harder to use, but benefits increase
- Rise of information technology
- Application/technology partnerships (aka force)
 - NSF Partnerships for Advanced Computational Infrastructure (NPACI for me)
 - As project manager, I sometimes felt as though I were holding the shotgun
 - Electron microscopes linked to supercomputers for data refinement, data stored in SRB, images retrieved for multiscale brain mapping project.
 - Large database scans and visualization including Protein Data Bank (PDB), Molecular Trajectories database, and Protein Sequence database using Legion and SRB
 - Scalable vis (MPIRE) as applied to astrophysics
 - Groundwater simulators (GWM, IPARS, SWM) paired with computing and data handling tools Active Data Repository (ADR), KeLP, MetaChaos, and Globus

Gateway

- CHARMM and Amber paired with Legion
- AppLeS scheduler and Network Weather Services paired with Globus and Legion
- immersed Boundary Method model of the heart and Titanium
- Grid-enabled MCell
- Strategic Applications Collaborations
- But these early partnerships really did pave the way for more to come later on
 Science

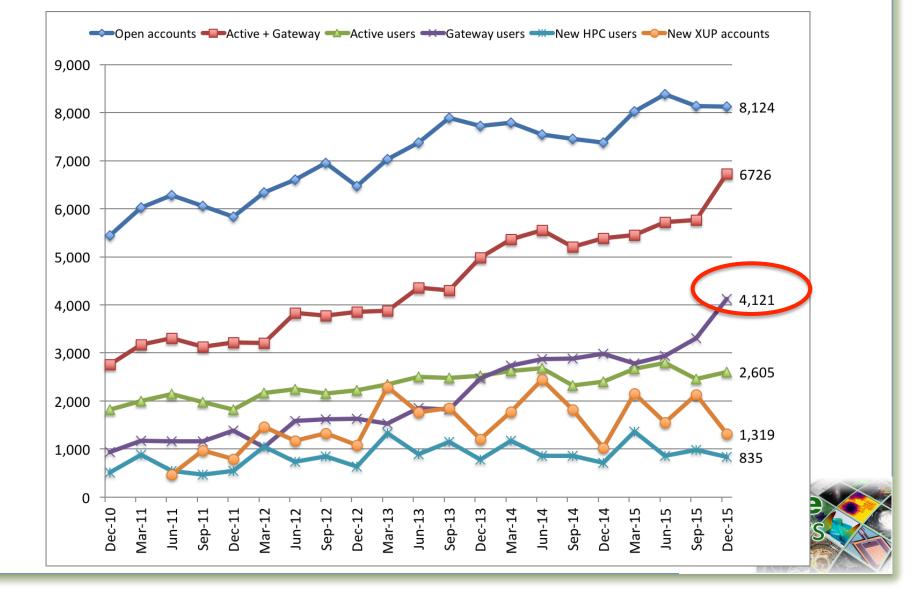
My experiences Early 2000s

- Rise of the Web as truly functional and ubiquitous
- TeraGrid and the development of the Science Gateway program
 - Initial focus on NSF Information Technology Research (ITR) projects (aka more forced marriages)
 - Linked Environments for Atmospheric Discovery
 - National Virtual Observatory
 - RENCI Bioportal
 - SPRUCE (urgent coomputing)
 - nanoHUB
 - GISolve/CyberGIS
 - Open Life Sciences Gateway
 - Neutron Science Gateway
- As opportunities grew, we saw more and more gateways developed
- Explosion of software offerings
 - Apps, clouds, workflows
 - Many more options that all promise to solve scientists' problems
 - Age of disillusionment

My experiences Today

- XSEDE Extended Collaborative Support program
 - Extensive program dedicated specifically to in depth engagements with the research community to improve CI uptake
 - ~70 ECSS staff across ~12 organizations
 - Expertise in supercomputing, but also workflows, gateways, visualization, databases and data analytics
 - Portion of the program dedicated to work with new communities
 - Extended, collaborative nature of the work helps make these projects a success

Open Invitation

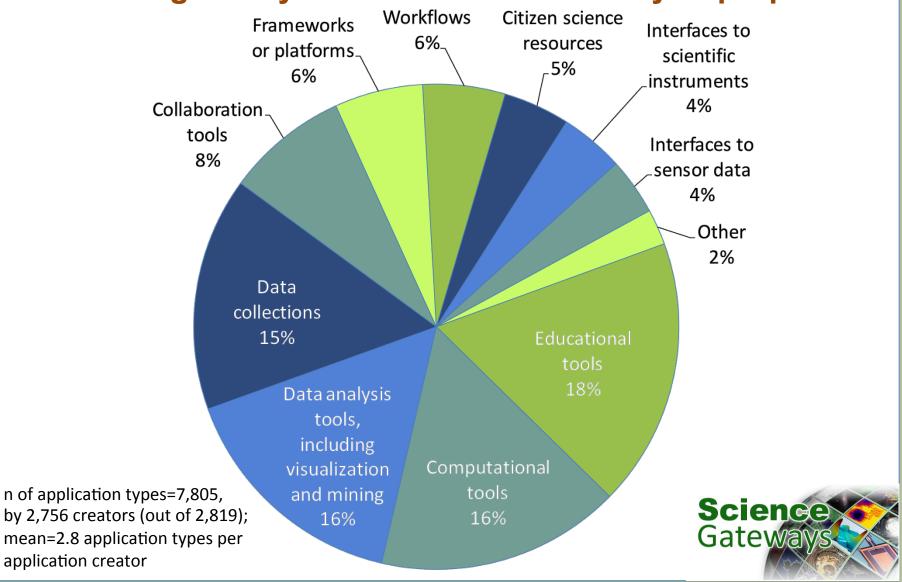

XSEDE is actively looking to expand its software infrastructure

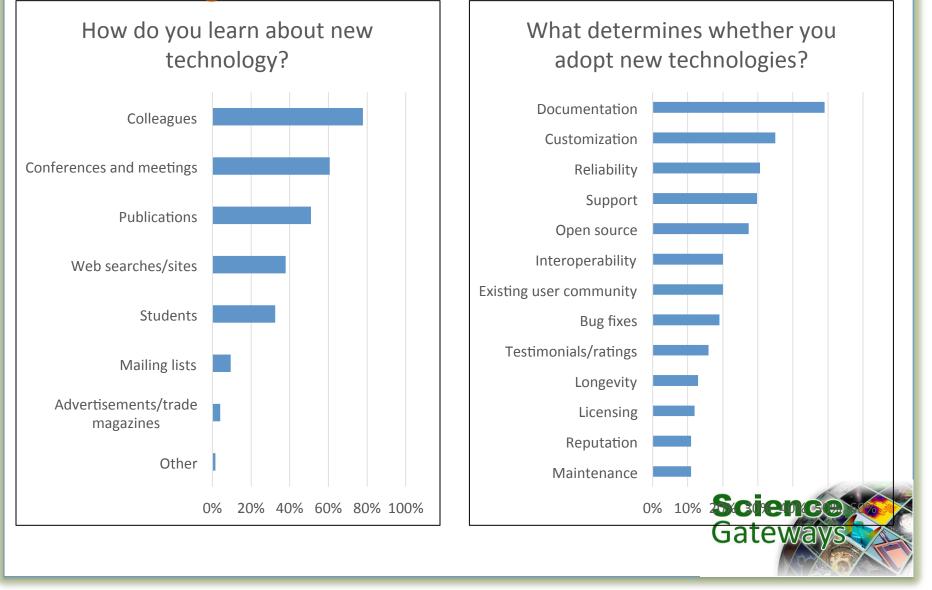
- Community Software Areas
 - Developer-supported software
 - Includes
 - Allocation on any XSEDE platforms
 - Backed up disk space
 - Listing in software catalog
 - XSEDE can provide usage statistics, promote training that you offer, highlight successes

http://www.xsede.org/software

Today, more users access XSEDE via gateways than by logging in

My experiences Today


- S2I2 conceptualization phase award for a Science Gateway Institute
- 5000 respondent survey to understand
 - Use of science gateways
 - Development of science gateways
 - Results published at http://sciencegateways.org/ resources/our-work/


88% indicate Web-based applications are important to their work

Specialized Resources	Percent
Data collections	75%
Data analysis tools, including visualization and mining	72%
Computational tools	72%
Tools for rapidly publishing and/or finding articles and data specific to my domain	69%
Educational tools	67%
Platforms for fostering group or community collaboration	63%
Simplified interfaces that eliminate the need to learn coding	62%
Citizen science and other public engagement resources	47%
Workflows that automate or capture tasks or processes	42%
Scientific instruments, such as telescopes, microscopes, or sensors	39%
n=4,004, or 88% of 4,538 researcher/educators. Percentage indicates these resources are "somewhat" or "very" important to their work.	Science Gateways

57% played some role in gateway creation and these gateways were used for a variety of purposes

We also asked developers about new technologies

I've been trying to help scientists use technology for a very long time!

In December, I attended this NSF workshop At this very same Westin

Cyberinfrastructure for NSF Large Facilities Workshop

December 1st, 10 a.m. - 6:00 p.m. & December 2nd, 8:30 a.m. to 2:30 p.m., 2015 Westin Arlington Gateway, Arlington, VA

Organizers

Workshop Chair:

Alex Szalay, Johns Hopkins University

Program Committee:

- 🖒 Christine Borgman, University of California, Los Angeles
- 🖒 Peter Couvares, Syracuse University
- Brian Glendenning, National Radio Astronomy Observatory
- 🖒 Kerstin Lehnert, Columbia University
- Chuck Meertens, UNAVCO
- 🖒 Manish Parashar, Rutgers University

Goal was to "create a forum for direct interaction between the NSF large facilities and CI developer community"

- Peter Couvares from the LIGO project shared observations on CI uptake by NSF large facilities
 - He nicely captured what I have observed over 20 years
- These observations can be applied to many things
 - When to use someone else's software
 - When to use a supercomputer
 - When to develop a science gateway

Insource/Outsource Tradeoffs

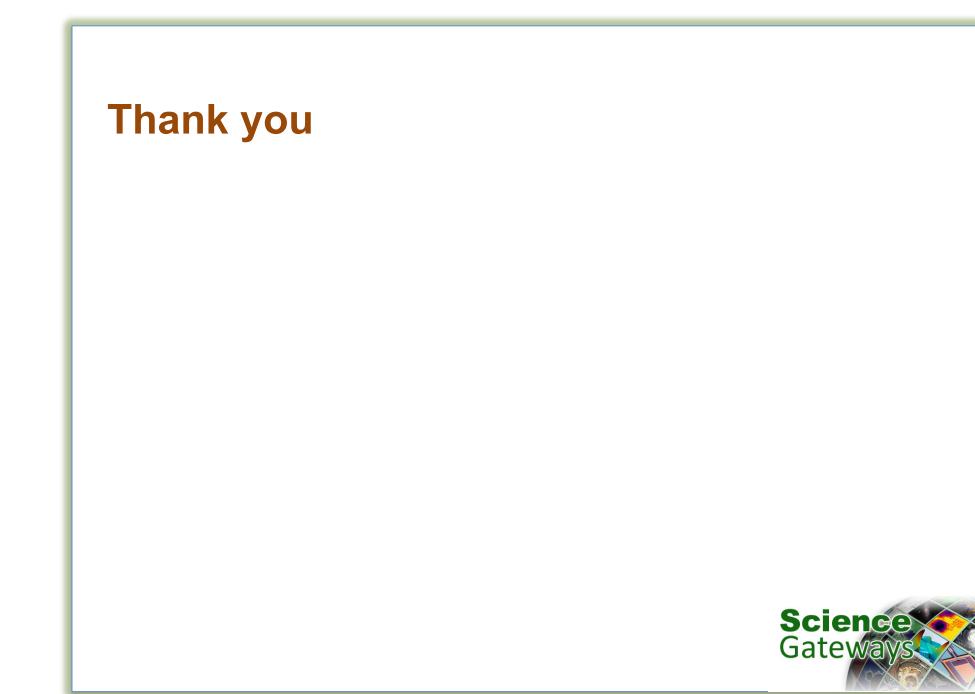
- CI interest and adoption is fundamentally a problem of desperation, credibility and risk
- "the best collaborators are the desperate ones" (Jim Gray)
- short of desperation, scientists and facilities are right to be skeptical and conservative when it comes to CI adoption

Outsourcing: Risks/Costs

- Time and attention cost
- Uncertain benefit
- CI is usually research to help research so some home runs, some base hits, some strikeouts.
- Unstable funding for turning research CI "hits" into sustainable, production CI infrastructure.

Peter's Thoughts

- Why is a large facility like LIGO solving old computing problems itself (maybe poorly), when proven solutions developed by experts exist in the CI community (for job scheduling, data movement, etc.)?
 - Well, there's "proven" (toy) and there's "proven" (production at scale).
 - Sometimes CI was examined and rejected early before it was proven, or we had a best-of-breed in-house solution years ago but the world changed.
 - Sometimes our problems are unique.
 - Sometimes our inferior solution is "good enough" and there is little/no science benefit to improving it.
 - Sometimes our inferior solution *isn't* "good enough" but we don't have the expertise, judgement, or time to understand that, and pay a science cost How do we identify/differentiate THIS case?
 - Sometimes we know or suspect we should, but don't have the internal resources to engage.
 - Sometimes we know or suspect we should, but the collaborators are difficult to work with (or visa versa) and the collaboration breaks down or never starts.


How Do We Bridge the Gap?

- A facility needs to be desperate to make a serious investment of time or resources.
 - Desperation can come in many forms: e.g., big problem we know we can't solve ourselves (carrot), scary NSF mandate (stick).
- The CI provider needs to offer something concrete, and easy, and low-risk to entice engagement, and then manage the engagement skillfully from there

 Solve one real problem for one person or group, and solve it well — earn allies and advocates, and work from that foothold.

- Sustainability: need a roadmap to continue Ci support beyond the life of the original award: produce CI that can be turned into unfunded, truly communitysupported OSS (rare), that can be neatly handed off to facilities to efficiently develop/maintain forever themselves (rare), that can find NSF funding as production infrastructure and not just research (rare), or self-fund by user fees (rare — Globus online is one example)
- Can we create more hybrid Cl/facility roles? Rather than a provider/consumer relationship, put the right human in the middle. That becomes a hedge against many of the risks described earlier (unaligned priorities, abandoned Cl, etc.).

