Modules for Experiments in Stellar Astrophysics

MESA solves the 1D fully coupled structure, mixing, and composition equations governing stellar evolution with an implicit finite volume scheme.

Core Development and Support Team

Rob Farmer

Josiah Schwab

Bill Paxton First Author

Pablo Marchant

Frank Timmes

Rich Townsend

Matteo Cantiello

Lars Bildsten

"Mother of All Demos" December 8, 1968

Douglas Engelbart

Bill Paxton

"The 90-minute presentation demonstrated almost all the fundamental elements of modern personal computing: windows, hypertext, graphics, efficient navigation and command input, video conferencing, the computer mouse, word processing, dynamic file linking, revision control, and a collaborative real-time editor".

After a stint at Xerox PARC, Paxton became Adobe's 5th Employee in 1983.

Bill invented scalable font technology.

The public facing part of this invention was Postscript, which evolved into today's PDF. Bill also co-authored version 1.0 of Adobe Illustrator.

Bill retired in 1990.

"Hello, my name is Bill Paxton. My I please use the gorgeous tools posted on your website? Jan, 8 2005

Bill is now a Senior Fellow in Computational Astrophysics Kavli Institute for Theoretical Physics University of California, Santa Barbara

- Potential Breakout session topics:
- 01) How do you conduct code reviews?
- 02) How do you measure code quality?
- 03) What role does code standards play?
- 04) Should existing apps be used or re-written?
- 05) How can productivity in developing software be raised?
- 06) When to develop for the next generation of hardware?

State-of-the-art modules provide 01) adaptive mesh refinement 02) sophisticated timestep controls 03) bit-for-bit consistency for all results across all supported platforms 04) oscillation capabilities 05) explosion capabilities 06) binary star capabilities 07) equation of states 08) opacities 09) nuclear reaction networks 10) element diffusion 11) boundary conditions and 12) changes to the mass of a star.

MESA has attracted over 840 registered users world-wide.

Worldwide market focused on stars is ~2400 researchers, with ~1200 on theory.

US market focused on stars is ~1200 researchers, with ~600 on theory.

The software instrument papers MESA I (2011), MESA II (2013), and MESA III (2015) have been cited by the community over 770 times.

MESA I and II rank within the 25 most cited astrophysics papers published in 2011 and 2013 respectively.

1	2011ApJS19218K Komatsu, E.; Smith, K. M.; Dunkley, J.; Page, L.; and 14 coauthors	5532.000 Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation
2	2011ApJS19216L	1183.000
	Larson, D.; Dunkley, J.; Hinshaw, G.; Komatsu, E.; Nolta, M. R.; Hill, R. S.; Jarosik, N.; and 14 coauthors	Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-derivedParameters
3	2011ApJ737103S Schlafly, Edward F.; Finkbeiner, Douglas P.	1037.000 Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD
4	2011ApJS19214J Jarosik, N.; Bennett, C. L.; Dunkley, J.; Gold, B.; Greason, M. R.; Halpern, M.; Komatsu, E.; and 14 coauthors	824.000 Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results
5	2011ApJ730119R	804.000
	Riess, Adam G.; Macri, Lucas; Li, Weidong; and 8 coauthors	A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3
6	2011ApJS19329A	690.000
	Aihara, Hiroaki; Allende Prieto, Carlos; and 178 coauthors	The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
7	2011AJ14272E	677.000
	Eisenstein, Daniel J.; Balbinot, Eduardo; and 239 coauthors	SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems
8	2011ApJ73619B	553.000
	Borucki, William J.; Koch, David G.; DeVore, Edna; and 66 coauthors	Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data
9	2011ApJS19735G	546.000
	Grogin, Norman A.; Kocevski, Dale D.; Ashby, Matthew L. N.; and 104 coauthors	CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey
10	2011ApJS19736K	538.000
	Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; and 120 coauthors	CANDELS: The Hubble Space Telescope Observations, Imaging Data Products, and Mosaics
11	2011MNRAS.416.3017B	513.000
	Beutler, Florian; Blake, Chris; and 8 coauthors	The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant
12	2011MNRAS.413101G	493.000
	Guo, Qi; White, Simon; Boylan-	From dwarf spheroidals to cD galaxies: simulating the galaxy
	and 7 coauthors	population in a ACDM cosmology
13	2011ApJS <u>1923P</u>	458.000
	Paxton, Bill; Bildsten, Lars;	Modules for Experiments in Stellar Astrophysics (MESA)
	Dotter, Aaron; Herwig, Falk; LaSaffre, Pierre, Timmes, F.X	

MESA II was one of 15 papers selected by the *American Astronomical Society* for "high-impact research" published between 2012 and 2015.

The annual MESA Summer School offers a week of extensive hands-on labs. The cadre of instructors, TAs and students (now over 120) are creating their own MESA user infrastructure at ~40 institutions around the world, accelerating research.

MESA has been used in ~27 courses since 2011, impacting ~300 undergrads, grads, postdocs, and faculty.

MESA provides portals for the community to openly share knowledge: users and developers have exchanged ~7126 messages since 2011.

MESA-WEB is a cloud resource for education that has served up over 800 models to 157 unique users in just over 6 months of operation.

http://mesa-web.asu.edu

MESA is the only stellar evolution software instrument that is

- 1) open source, thread-safe, and multi-core
- 2) employs modern numerical and software approaches,
- 3) solves the coupled equations as a single unit,
- combines the numerics and physics into modules that have wide composability and interoperability with other software ecosystems
- 5) has wide applicability spanning giant planets to massive stars to binary stars to modified theories of gravity to particle physics beyond the standard model, and more.
 All other instruments cover a restricted range.

There are three other open source but unsupported codes, TYCHO, CESAM and EZ; two web interface applications, YSEC and EZ, and about a dozen proprietary codes.

None of these alternatives offer the community the unique advantages of the MESA project.

MESA has seen significant adoption by the astrophysics community.

MESA is well on its way to becoming the *de facto* world standard for evolving stars, providing a crucial community resource at just the right time.