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Persistence of Memory

White dwarf supernova play a key role in astronomy:

Distance indicators
Element factories
Cosmic-ray accelerators
Kinetic energy sources

Binary star terminus

|[dentification of the progenitor system(s) remains unknown.
This is the outstanding mystery in the field.



Observed correlations between the
peak and width of the light curve
help in the hunt for the progenitors.
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Variations in the peak luminosity may originate in part from a scatter in the
composition of the main-sequence stars that become white dwarfs.
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Mass and charge conservation set the white dwarf’s neutron enrichment:

in:1 Ye:;EXi




>6Ni and *8Ni are the dominant species produced by the explosion. Mass
and charge conservation imply

X (°°Ni) = 1 — X(°®*Ni) = 58Y, — 28

We can set Y. equal to the initial Ye of the white dwarf since
weak interactions do not dominate where most of the *®Ni is made:

Z
X(°°Ni) =1 — 0.057—
Ao

This relation connects a quantity at birth to a quantity at explosion.
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Observations find consistency with the analytical result.
Trend seems smaller than predicted, with considerable scatter.
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Such efforts assume galaxy metallicity = supernova metallicity.
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affected by the white dwarf metallicity ——  Post-Process 1D Model
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Supernova remnants

suggest the
Ca/S ratio is a
robust tracer of
white dwarf
neutronization.

Martinez-Rodriguez et al 2017
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Ca and Fe features at 4200 A and 5200 A at 30 days after
explosion appear to deepen with progenitor metallicity.
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These features may allow for differentiation among progenitor
metallicities and potentially help reduce the intrinsic Hubble scatter.
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3D Element Factories

Astronomy texts stress that massive stars are element factories
that produce most of the periodic table of the elements.

Yet, our most advanced 3D supernova explosion simulations rely
on ~2| isotopes to predict the energy generation and
nucleosynthesis.

This yawning gap between element factories and 21 isotopes in 3D
simulations is due, in part, by choosing to invest increasing compute
capabilities into spatial resolution rather than the number of
isotopes.
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204 isotopes
Beyond carbon burning, a 21 isotopes

minimum of =130 isotopes is *
needed for convergence of Ye >
and the locations of the '
burning shells at the =~ 10%
level.

This 21 isotope MESA
model was mapped into a
21 isotope 3D FLASH
initial model during shell Si-
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First 3D simulation of the final minutes of iron core growth in a
massive star, up to and including core-collapse.

A non-spherical progenitor has a significant impact on the
likelihood for explosion, enhancing the explosion energy.



Final Fe core masses are similar,
correlated with the time it takes to
reach collapse:

.51 Mo - fiducial MESA

.46 Mo - enhanced-rate MESA
.50 Mo - 3D FLASH simulation.

Caution: more exploration is
needed to assess the fidelity of 1D
structure to 3D physics.
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The stronger turbulence excited
by 3D initial conditions gives a
greater (diagnostic) explosion
energy.
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“getting the progenitor right”



26 Modes of Uncertainty

Stars are gravitationally confined thermonuclear reactors.



How do the properties of CO white dwarfs, evolved from
the main-sequence, vary with respect to the composite
uncertainties in the reaction rates?




STARLIB is the first (and only) reaction rate library that gives a
Monte Carlo / Bayesian reaction rate probability density for a
reaction due to experimental uncertainties.
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First Monte Carlo stellar evolution study of a 3 Me model
evolved from the pre main-sequence to a white dwarf.
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The Short and Long of Paper Citations

Are the papers that drive the AAS journals impact factor (a
2 year horizon) the same papers that the community values
5 years later? 10 years later? 20 years?

Is MNRAS eating the AAS’s lunch?
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Observed correlations between the peak luminosity and
width of the light curve help in the hunt for the progenitors.
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Smashing White Dwarfs

Single-Degenerate channel Double-Degenerate channel

The relative frequency of
these channels is unknown.

Collisions
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0.6 + 0.6 Mo,
zero impact
parameter,
x-y plane,
temperature.

Raskin et al 2010

2010: 2 million particles with inline burning

and realistic thermodynamics.




Message in 2010: Lots of interesting possibilities!
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Observations suggest about 5 million white dwarf
supernova per year within a redshift of one.




An objection to the collision scenario is the
perception that they are extremely rare.

Duel Between
Onegin and
Lenski

llya Repin (1899)

Pen, brush, ink,
watercolor.

Pushkin Museum,
Moscow




Collisions have been believed to predominantly occur in dense
stellar environments, such as cores of globular clusters.

Even accounting for gravitational focusing, the collision rate
is ~5000 per year within a redshift of one.

o = mb* = TR? [1 + (%)2}

Like a duel, this mechanism is single shot.



Wiait! There is a 3rd body in this duel.
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Hierarchical triple star systems with white dwarf binary
orbital separations of 1-300 AU are known to exist.
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The white dwarf binary’s ellipticity can be driven to large
values in a triple star system because ellipticity can be traded
for inclination in the conservation of angular momentum

L, =+v1—¢€? cos(i)

in Kozai-Lidov oscillations.
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3 body problem
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Unlike a duel, this mechanism is repeated shots.



If 15-20 % of IMeo < M < 8Mo stars have a M > | Mo companion,
the collision scenario can dominate.

AO Measurements of A-stars, N=121 RV Measurements of red giants in open clusters, N=797
I All binaries B Al Red Giants
Il 05<P<5yr
% 1 5 B - Msecondary >1 MG Il 0.5 <P <5 yr, Msecondary > 1Mo
2 °
© < 100
£ 8
o S
ks 3
Nt i
8 5
£ g 10
> £
Z S
4

5 50 500 5,000 50,000 1

Period (years) ! 2 Mpri‘rlnary (Mo) ° °

Klein & Katz 2017

Prediction: GAIA will find ~10 new wide orbit
double degenerates within 20 pc from the Sun.
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21 isotope network S6cr = 6Fe
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Advances (plus a little serendipity) over the next decade should
enable us to decipher the progenitors of white dwarf supernovae:

I) Silicon, Sulfur, Calcium ratios

2) Unburned carbon and oxygen

3) Tidal tails

4) Sufficient number of binary WDs

5) Early gamma-rays

6) Narrow hydrogen emission or absorption
7) Circumstellar interaction in radio or x-rays
8) Gravitational wave signatures

9) Frequency as a function of redshift



