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Persistence of Memory

White dwarf supernova play a key role in astronomy:

Distance indicators  

Element factories 

Cosmic-ray accelerators 

Kinetic energy sources 

Binary star terminus

Identification of the progenitor system(s) remains unknown.  
This is the outstanding mystery in the field.



Observed correlations between the  
peak and width of the light curve  
help in the hunt for the progenitors.
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Kim et al 1997

Brighter is wider.
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Calan/Tololo SNe Ia

This empirical fact can 
be used to correct for 
variations in the peak 
luminosity to give a 
standard candle.

After correction, 
distances are 
accurate to ≤ 7% .



Feltzing et al 2001

Variations in the peak luminosity may originate in part from a scatter in the 
composition of the main-sequence stars that become white dwarfs. 

Milky Way disk stars have a factor  
of ~10 scatter in metallicity at any age.

Matig et al 2016

Bergemann et al 2014

Duran et al 2013
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Mass and charge conservation set the white dwarf’s neutron enrichment:



X(56Ni) = 1−X(58Ni) = 58Ye − 28

We can set Ye equal to the initial Ye of the white dwarf since  
weak interactions do not dominate where most of the 56Ni is made:

X(56Ni) = 1− 0.057
Z

Z�

56Ni and 58Ni are the dominant species produced by the explosion. Mass 
and charge conservation imply

This relation connects a quantity at birth to a quantity at explosion.
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Such efforts assume galaxy metallicity = supernova metallicity.

Neill et al 2009
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Observations find consistency with the analytical result.  
Trend seems smaller than predicted, with considerable scatter.

Howell et al 2009

Gallagher et al 2008

Ellis et al 2007



Measurement of  Y28Si,  Y32S/Y28Si,  
Y40Ca/Y32S, Y54Fe/Y28Si is a sufficient 
to determine Ye to ~6%.

The Si-group elements are also 
affected by the white dwarf metallicity 
in a model independent manner.

28Si is insensitive to Ye,  
32S has a nearly linear trend,  
40Ca has a nearly quadratic trend. 

De et al 2014

Analytical

28Si (x100)
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40Ca (x2000)

Post-Process 1D Model



Martínez-Rodríguez et al 2017

Supernova remnants 
suggest the  
Ca/S ratio is a 
robust tracer of 
white dwarf 
neutronization. 



Miles et al 2016

Ca and Fe features at 4200 Å and 5200 Å at 30 days after 
explosion appear to deepen with progenitor metallicity.

These features may allow for differentiation among progenitor 
metallicities and potentially help reduce the intrinsic Hubble scatter. 

De et al 2014
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3D Element Factories

Astronomy texts stress that massive stars are element factories 
that produce most of the periodic table of the elements.

Yet, our most advanced 3D supernova explosion simulations rely 
on ~21 isotopes to predict the energy generation and 
nucleosynthesis. 

This yawning gap between element factories and 21 isotopes in 3D 
simulations is due, in part, by choosing to invest increasing compute 
capabilities into spatial resolution rather than the number of 
isotopes. 



Timmes & Couch 2016
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Farmer et al 2016

This 21 isotope MESA 
model was mapped into a 
21 isotope 3D FLASH 
initial model during shell Si-
burning.

Beyond carbon burning, a 
minimum of ≈130 isotopes is 
needed for convergence of  Ye 
and the locations of the 
burning shells at the ≈10% 
level.



First 3D simulation of the final minutes of iron core growth in a 
massive star, up to and including core-collapse.  

A non-spherical progenitor has a significant impact on the 
likelihood for explosion, enhancing the explosion energy. 

Couch et al 2015
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Final Fe core masses are similar, 
correlated with the time it takes to 
reach collapse: 
1.51 M⊙ - fiducial MESA  
1.46 M⊙ - enhanced-rate MESA  
1.50 M⊙ - 3D FLASH simulation. 
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“getting the progenitor right”



Stars are gravitationally confined thermonuclear reactors. 

26 Modes of Uncertainty



How do the properties of CO white dwarfs, evolved from 
the main-sequence, vary with respect to the composite 
uncertainties in the reaction rates?

∑ 𝜹(reaction rates) = ?



STARLIB is the first (and only) reaction rate library that gives a 
Monte Carlo / Bayesian reaction rate probability density for a 
reaction due to experimental uncertainties.
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First Monte Carlo stellar evolution study of a 3 M⊙ model 

evolved from the pre main-sequence to a white dwarf. 

Fields et al 2016
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The Short and Long of Paper Citations 

Are the papers that drive the AAS journals impact factor (a 
2 year horizon) the same papers that the community values 
5 years later? 10 years later? 20 years?

Is MNRAS eating the AAS’s lunch?
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AstrolabeIlluminating Astronomy Data
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Observed correlations between the peak luminosity and  
width of the light curve help in the hunt for the progenitors.



Smashing White Dwarfs

Single-Degenerate channel Double-Degenerate channel

Mergers

The relative frequency of 
these channels is unknown.

Collisions



Benz et al 1985

The first white dwarf smashes 
were calculated in 1985:

3D, 5000 particles with nuclear 
burning done afterwards and 
approximate thermodynamics.

Bottom line:
Tiny amounts of 56Ni produced.

Message:
Nothing here, move along.

0.6 + 0.9 Msun



0.6 + 0.6 M⨀,  
zero impact 
parameter,
x-y plane,
temperature.

Raskin et al 2010

2010:  2 million particles with inline burning 
and realistic thermodynamics.
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Message in 2010:  Lots of interesting possibilities!



Observations suggest about 5 million white dwarf 
supernova per year within a redshift of one.

SDSS  
David Kirkby



Pen, brush, ink, 
watercolor.

An objection to the collision scenario is the 
perception that they are extremely rare. 

Duel Between 
Onegin and 
Lenski

Ilya Repin (1899)

Pushkin Museum, 
Moscow



Even accounting for gravitational focusing, the collision rate  
is ~5000 per year within a redshift of one.

σ = πb
2 = πR

2 1 +
vesc

v

2

Collisions have been believed to predominantly occur in dense 
stellar environments, such as cores of globular clusters.

Like a duel, this mechanism is single shot.



Wait!  There is a 3rd body in this duel.

Pen, brush, ink, 
watercolor.

Duel Between 
Onegin and 
Lenski

Ilya Repin (1899)

Pushkin Museum, 
Moscow



Hierarchical triple star systems with white dwarf binary 
orbital separations of 1-300 AU are known to exist.



3 body problem

e � 0.999999

The white dwarf binary’s ellipticity can be driven to large 
values in a triple star system because ellipticity can be traded 
for inclination in the conservation of angular momentum

Lz =
√

1− e2 cos(i)

in Kozai-Lidov oscillations.
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White dwarfs in a 
triple star system 
have a ~3% chance 
of a head-on collision 
within 5 billion years.



Unlike a duel, this mechanism is repeated shots.



If 15-20 % of 1M⊙ ≤ M ≤ 8M⊙ stars have a M > 1M⊙ companion, 
the collision scenario can dominate.
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Prediction: GAIA will find ~10 new wide orbit 
double degenerates within 20 pc from the Sun.  



Martínez-Rodríguez et al 2016
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Raskin et al 2010



Raskin et al 2010
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Raskin et al 2010
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1) Silicon, Sulfur, Calcium ratios

2) Unburned carbon and oxygen 

3) Tidal tails

4) Sufficient number of binary WDs

5) Early gamma-rays

6) Narrow hydrogen emission or absorption 

7) Circumstellar interaction in radio or x-rays

8) Gravitational wave signatures

9) Frequency as a function of redshift

Advances (plus a little serendipity) over the next decade should 
enable us to decipher the progenitors of white dwarf supernovae:


