
A hypothesis or theory is clear, decisive, and 
positive, but it is believed by no one but the person 
who created it. Experimental findings, on the other 
hand, are messy, inexact things, which are believed 
by everyone except the person who did that work.

                                     Harlow Shapley
                          Through Rugged Ways to the Stars
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Sites of the week

www.astrophysicsspectator.com/issues/issue2/issue2.13.html

www.unige.ch/~hairer/software.html

mathworld.wolfram.com/Jacobian.html

nobelprize.org/physics/laureates/1983/fowler-autobio.html



Syllabus

1 June 20 Purpose, Motivation, Forming a network,
PP-chain code

2 June 21 Jacobian formation, Energy generation, 
Time integration, CNO-cycle code

3 June 22 Linear algebra, Thermodynamic trajectories,
Alpha-chain code

4 June 23 Nuclear Statistical Equilibrium code,
Big-Bang code

5 June 24 Networks in hydrodynamic simulations,
General network code



Volume Constant

YA, YB, YC, YD, YE

Thermostat
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And our reaction network takes the form

A 2B

DA + C

B + E

!
"

#

$

%

&

ẎA = −αYA + βY 2
B − γYAYC + δYD + ξYBYE

ẎB = 2αYA − 2βY 2

B + εYD − ξYBYE

ẎC = −γYAYC + δYD + ξYBYE

ẎD = γYAYC − δYD − εYD

ẎE = εYD − ξYBYE

Last Lecture



In terms of the reaction cross sections and molar abundances, 
this reaction network is described by the following set of 
ordinary differential equations

Ẏi =
∑

j

CiRjYj+
∑

jk

Ci

Cj !Ck!
ρNA Rjk Yj Yk+

∑

jkl

Ci

Cj !Ck!Cl!
ρ2N2

A Rjkl Yj YkYl

NP

N
P

 127 Isotopes

1270 Rates

87.6% Sparse

Flows (#/sec):

  3.05E+13

  3.30E+10

  3.56E+07

  3.84E+04

  4.15E+01

 -2.23E+01

 -2.07E+04

 -1.91E+07

 -1.77E+10

 -1.64E+13

 -1.52E+16
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P P NP e+ !+ + +
1010 years

P P
P
NP

P
NP

PN
NP+ + +

106 years

PNP
P
NP+ +

6 sec

! ray

Ẏp = −YpYpRp,p − YpYdRp,d + Y3heY3heR3he,3he

Ẏ3he = YpYdRp,d − Yhe3Yhe3Rhe3,he3

Ẏd = 0.5YpYpRp,p − YpYdRp,d

Ẏ4he = 0.5Yhe3Yhe3Rhe3,he3

Where the density and Avogadro 
number dependence has been 
folded into the reaction rates 
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P P NP e+ !+ + +
1010 yr

P P
P
NP

P
NP

PN
NP+ + +

3x105 yr 1.4x106 yr 1.4x106 yr

95 yr0.5 yr

800 sec 1 sec

10-8 sec

NPe-P P+ + !+
1013 yr

PNP
P
NP+ +

6 sec
! ray

7Li7Be !+ e- +

P7Li
PN
NP

PN
NP

+ +

7Be
P
NP

PN
NP+ + ! ray

8B 8Be e+ !+ +

8Be
PN
NP

PN
NP+

7Be
P
NP

PN
NP+ + ! ray

P7Be 8B+ + ! ray

produces
            99.75% 
                          2H

                 produces
       0.25%
2H

PP I branch

86% of 3He

PP II branch

14% of 3He

PP III branch

0.1% of 3He

The weights of the reactions are given for conditions in the Sun.
The PP chains are the most important energy source in stars with masses less than 1.5 Msun.
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An atomic mass unit (amu) is defined as precisely 1/12 the mass 
of an atom of 12C at rest, unbound and in its ground state. The 
mass of an atomic mass unit is determined experimentally as 
1.66053873x10-24 g (2004 CODATA value).

Conceptually, an amu is equal to 1 gram divided by Avogadro’s 
constant NA. In imprecise terms, one amu is the average of the 
proton rest mass and the neutron rest mass.  The mass of an 
atom in amu is roughly equal to the sum of the number of 
protons and neutrons in the nucleus.

Abundance Variables

Carbon Atom



Weak reaction terminology

β−decay : n → p + e− + νe

(Z, A) → (Z + 1, A) + e− + νe

β+decay : p → n + e+ + νe

(Z, A) → (Z − 1, A) + e+ + νe

electron capture : p + e− → n + νe

(Z, A) + e− → (Z − 1, A) + νe

positron capture : n + e+
→ p + νe

(Z, A) + e+
→ (Z + 1, A) + νe



We may write our initial value problem as

The ODE coefficients span orders of magnitude since the 
reaction rates depend on high powers of the temperature, and 
since the abundances themselves may traverse orders of 
magnitude. As a result, nuclear reaction networks are “stiff”.

Ẏi =
∑

j

CiRjYj+
∑

jk

Ci

Cj !Ck!
ρNA Rjk Yj Yk+

∑

jkl

Ci

Cj !Ck!Cl!
ρ2N2

A Rjkl Yj YkYl

Integrating a reaction network

ẏ = f(y)

or, in vector notation as



A rigorous definition is the ODEs are stiff if the negative, real 
part of the eigenvalues λj of the Jacobian matrix ∂f/∂y obey

S > 1015 is not uncommon in astrophysics. 

Physically this means that some isotopes are changing on much 
faster timescales than other isotopes. PP-chain nucleosynthesis, 
which we examined yesterday and is responsible for most of 
the energy output of the Sun, offers an excellent example.

Integrating a reaction network

S =
max|Re(λj)|

min|Re(λj)|
≫ 1



Practically speaking, stiffness means that an implicit time 
integration is generally needed to solve the initial value 
problem. This has two implications.

First, it means that an accurate Jacobian matrix ∂f/∂y must be 
available. Fortunately, the reaction network ODEs depend on 
simple powers of the composition variables, making the Jacobian 
easy to evaluate analytically.

Secondly, it means that we’ll be solving (large) systems of linear 
equations. As the linear algebra will generally dominate the 
time to obtain a solution, we’ll want to use efficient solvers.

Integrating a reaction network



It is interesting to examine the properties of a system 
containing only two species A and B coupled by forward and 
reverse reactions having rates RA and RB.

With the initial condition that YB = 0 at t = 0, this system has 
the analytic solution

Integrating a reaction network

dYA

dt
= −YARA + YBRB

dYB

dt
= YARA − YBRB

YB

YA

=

[

e
(RA+RB)t

− 1

]

[

RB

RA

e
(RA+RB)t

+ 1

]

−1

.



Species A and B will approach their 
steady state equilibrium 
abundances, YB/YA= RA/RB, in a 
time roughly (RA + RB)-1.

This means that equilibration 
between the pair occurs in a time 
determined by the most rapid rate 
coupling the two. This sometimes 
seems contrary to intuition.

Integrating a reaction network

YB

YA

=

[

e
(RA+RB)t

− 1

]

[

RB

RA

e
(RA+RB)t

+ 1

]

−1

.



This solution illustrates the necessity of an implicit solution.  
When YA and YB  have come into equilibrium one will want to 
take a large time step such that RΔt >> 1. 

If the ODEs are solved explicitly, the numerical oscillations will 
occur in the abundances, frequently leading to negative values.

Integrating a reaction network

Y
t+1
A

= Y
t
A + ∆t

[

−Y
t
ARA + Y

t
BRB

]

Y
t+1
B

= Y
t
B + ∆t
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Y
t
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t
BRB

]

YB

YA

=
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e
(RA+RB)t
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]
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e
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]

−1

.



If one evaluates the abundances on the right hand side of the 
ODEs at the new time, Yi + ∂Yi, and solves the resulting set of 
linear equations

For small Δt this is equivalent to the explicit solution, but for 
large Δt the solution becomes insensitive to Δt and approaches 
the correct equilibrium solution.

Integrating a reaction network

δYA = −δYB =
−YARA + YBRB

1/∆t + RA + RB



Consider the 12C(α,γ)16O reaction proceeding at a rate R.

Each term on the right hand side contributes two Jacobian 
matrix elements:

Forming the Jacobian

Ẏ (4He) = −Y (4He) Y (12C) R + . . .

Ẏ (12C) = −Y (4He) Y (12C) R + . . .

Ẏ (16O) = +Y (4He) Y (12C) R + . . .

J(4He,12 C) =
∂Ẏ (4He)

∂Y (12C)
= −Y (4He) R + . . .

J(4He,4 He) =
∂Ẏ (4He)

∂Y (4He)
= −Y (12C) R + . . .



ODEs

Jacobian elements

Forming the Jacobian

Ẏ (4He) = −Y (4He) Y (12C) R + . . .

Ẏ (12C) = −Y (4He) Y (12C) R + . . .

Ẏ (16O) = +Y (4He) Y (12C) R + . . .

J(12C,4 He) =
∂Ẏ (12C)

∂Y (4He)
= −Y (12C) R + . . .

J(12C,12 C) =
∂Ẏ (12C)

∂Y (12C)
= −Y (4He) R + . . .

J(16O,4 He) =
∂Ẏ (16O)

∂Y (4He)
= +Y (12C) R + . . .

J(16O,12 C) =
∂Ẏ (16O)

∂Y (12C)
= +Y (4He) R + . . .



The Jacobian matrix elements represent flows into (positive) or 
out of (negative) an isotope. 

The matrices are not positive-definite or symmetric as the 
forward and reverse rates not usually equal, but they are 
typically diagonally dominant.

Forming the Jacobian

N P

N

P

  47 Isotopes

 279 Rates

75.3% Sparse

Flows (#/sec):

  1.85E+14

  1.35E+11

  9.77E+07

  7.09E+04

  5.15E+01

 -2.67E+01

 -3.68E+04

 -5.07E+07

 -6.98E+10

 -9.62E+13

 -1.32E+17



The pattern of nonzeros doesn’t change with time, but each 
matrix element may change in magnitude and/or sign as the 
temperature, density, or abundances change with time.

The matrices are sparse, and get sparser as the number of 
isotopes increase.

Forming the Jacobian

N P

N
P

  76 Isotopes

 582 Rates

82.0% Sparse

Flows (#/sec):

  3.05E+13

  3.29E+10

  3.56E+07

  3.84E+04

  4.15E+01

 -2.23E+01

 -2.07E+04

 -1.91E+07

 -1.77E+10

 -1.64E+13

 -1.52E+16



In principal, every species reacts with every other species, 
resulting in a dense Jacobian matrix, but in practice it is 
possible to neglect most of these reactions. 

Captures of free neutrons and isotopes of H and He on heavy 
nuclei occur much faster than fusions of heavier nuclei because 
of the Zi Zj dependence of the repulsive Coulomb term in the 
nuclear potential. 

Forming the Jacobian

Coulomb Barrier
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Furthermore, with the exception of the PP-chains and Big Bang 
nucleosynthesis, reactions involving secondary isotopes of H 
(deuterium and tritium) and He are neglectable. 

Photodisintegrations also tend to eject free nucleons or 
α-particles.

Forming the Jacobian

Disintegration
Christian Jehle, 2005



Thus, with a few important exceptions, for each nucleus we 
need only consider twelve reactions linking it to its nuclear 
neighbors by the capture of an n, p, α or γ and release a 
different one of these four.

Forming the Jacobian

NP

N
P

 200 Isotopes

2134 Rates

91.9% Sparse

Flows (#/sec):

  1.85E+14

  1.34E+11

  9.75E+07

  7.07E+04

  5.13E+01

 -2.69E+01

 -3.70E+04

 -5.10E+07

 -7.03E+10

 -9.69E+13

 -1.34E+17
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Interlude

School of Athens
1510
Raffaello Sanzio



One of the most important consequences of changing the 
composition is the release (or absorption) of energy. The energy 
generation rate is given by

where Mic2 is the rest mass energy of species i. 

The mass of a nucleus is conveniently expressed in terms of 
tabulations of the the atomic mass excess

where     is the atomic mass unit. 

Energy Generation

ϵ̇nuc = −

∑

i

NAMic
2
Ẏi − ϵ̇ν (erg g−1 s−1)

Mi = Aimµ + Mex,i

mµ



The use of atomic mass units has the added benefit that 
electron conservation is correctly accounted for in the case of 
β− decays and e− captures, though reactions involving positrons 
require careful treatment.

The relationship between the binding energy of a nucleus and 
the mass excess is

Thus, the nuclear energy generation rate may be written  

Energy Generation

Ebind,i = ZiMex,p + NiMex,n − Mex,i

ϵ̇nuc =
∑

i

NAEbind,iẎi −

∑

i

NA(ZiMex,p + NiMex,n)Ẏi − ϵ̇ν



The energy lost to the freely streaming neutrinos has two 
components. One component comes from neutrino producing 
reactions and the other from thermal processes.

Energy Generation

SN 1987a neutrino 
Irvine-Michigan-Brookhaven



Since neutrinos stream freely from the reaction site, this 
allows the simple replacement of the Mic2 term in our previous 
expression with an averaged energy loss term.

where we consider only those contributions to Ydot due to 
neutrino producing reactions.

Typically the average energy losses are performed by studying 
each nucleus individually, its excited state distribution, weak 
reaction strength distribution, etc. The results are then 
expressed as fitting functions, e.g., Langanke & Martinez-
Pinedo, NucPhys A,673, 481 (2000)

Energy Generation

ϵ̇ν =

∑

i

⟨Eν⟩Ẏi,weak



Neutrino losses from thermal processes include 

pair neutrino: e+ + e- -> nu + nubar 

photoneutrino: e- + γ -> e- + nu + nubar

plasma neutrino:  γplasmon -> nu + nubar

bremsstrahlung: e- + N(z,a) -> e- + N(z,a) + nu + nubar

recombination: e- (continuum) -> e- (bound) + nu + nubar

These calculations are difficult and the results are typically 
expressed in tables or fitting formulas. For example, Itoh et al. 
ApJS 102, 411, 1996 is used in the codes for these lectures.

Energy Generation



Energy Generation

A millimeter-wide pellet of hydrogen explodes under the 
multiple-angled fire of the Omega laser during a recent 
experiment at the Laboratory for Laser Energetics.



Given the initial conditions (constant temperature, constant 
density, starting composition), we wish to solve the stiff set of 
ODEs that represent our reaction network

We’ll take a look at several (but not all) methods of advancing 
the composition changes in time.  Nearly all of these methods 
are in active use among various astrophysics researchers.

Time integration

ẏ = f(y)



A good ODE integrator should exert some adaptive control 
over its own progress, making frequent changes in its stepsize. 

Usually the purpose of this adaptive stepsize control is to 
achieve some predetermined accuracy in the solution with 
minimum computational effort. 

Many small steps should tiptoe through treacherous terrain, 
while a few great strides should speed through smooth 
uninteresting countryside.

Time integration



The resulting gains in efficiency are not mere tens of percents 
or factors of two; they can sometimes be factors of ten, a 
hundred, or more. 

Sometimes accuracy may be demanded not directly in the 
solution itself, but in some related conserved quantity that can 
be monitored.

Implementation of adaptive stepsize control requires that the 
stepping algorithm return information about its performance, 
most importantly, an estimate of its truncation error.

Time integration



Obviously, the calculation of this information will add to the 
computational overhead, but the investment will generally be 
repaid handsomely.

Time integration



The simplest 1rst order Euler method moves the system 
over a time step h by

where the change    is found by expanding          about

which is simply

This method costs 1 Jacobian and 1 right-hand side evaluation,
1 matrix reduction, and 1 backsubstitution.

Time integration

ẏ = f(y)

y
n+1 = yn + ∆

∆ f(yn+1) f(yn)

(1̃/h − J̃) · ∆ = f(yn)

Ã · x = b



This version of the Euler method has the smallest cost per 
time step and is one of the most common methods for evolving 
reaction networks.

The disadvantage is this method provides no rigorous estimate 
of the accuracy of the integration step.

Heuristics are invoked to gain some sense of accuracy and to 
form the next time step,. Such heuristics and are typically 
based upon limiting the change in any abundance, which is 
above some specified level (say 10-4 in mass fraction), to be less 
than some specified value (say, 5%).

Time integration



This simplest 1rst order Euler method can be improved somewhat 
by iterating on the basic time step formula

that is, one seeks the zero of the function

Iteration continues until the corrections are suitably small and 
the function is within some tolerance of zero.  This provides the 
method with some measure of stability and convergence. 

If this convergence does not occur within a reasonable number 
of iterations, the timestep is subdivided into smaller intervals 
until a converged solution can be achieved.

Time integration

y
n+1 = yn + ∆

z(y) = yn+1 − yn − ∆ = 0



However, a formal estimate of the truncation error is still not 
available (as it must be for any first order scheme). 

The 1rst Euler method could be modified to implement 
“step doubling” to gain a formal accuracy estimate; take two 
half step and one full step. If the two solutions agree within 
some specified accuracy tolerance, accept the time step. 

Step doubling is expensive. Higher order methods obtain 
accuracy estimates by comparing solutions at different orders. 
We turn to two of these schemes next.

Time integration



The 4th order Kaps-Rentrop method advances a system 
over a time step h by

where the     are found from solving the staged equations

The bi, γ, aij, and cij are fixed constants of the method. 

Time integration

yn+1 = yn +

4∑

i=1

bi∆i

Ã · ∆1 = f(yn)

Ã = (1̃/γh − J̃)

Ã · ∆2 = f(yn + a21∆1) + c21∆1/h

Ã · ∆3 = f(yn + a31∆1 + a32∆2) + (c31∆1 + c32∆2)/h

Ã · ∆4 = f(yn + a31∆1 + a32∆2) + (c41∆1 + c42∆2 + c43∆3)/h

ẏ = f(y)

∆i



An estimate of the truncation error is made by comparing an 
embedded 3rd-order solution with the 4th-order solution. This in 
turn permits adaptive stepsize control. 

This method costs 1 Jacobian and 3 right-hand side evaluations, 
1 matrix reduction, and 4 backsubstitutions for a time step that 
meets the specified integration accuracy.

Possessing an estimate of the integration accuracy seems well 
worth the small additional cost over the simplest Euler 
method; two extra evaluations of the right-hand side and three 
extra backsubstitutions.

Time integration



Note in this method not all of the right-hand sides are known 
in advance. (Δ4 depends on Δ3 ... depends on  Δ1).   

This general feature of the higher-order integration methods 
examined in this lecture series will impact the optimal choice 
of a linear algebra package.

Time integration



The variable order Bader-Deuflhard method advances a system 
           over a large time step H from yn to yn+1 by forming

then for k=1,2 ... m-1 solving the staged equations

closure is obtained by the last stage 

Time integration

ẏ = f(y)

h = H/m Ã = (1̃ − J̃)

Ã · ∆0 = hf(yn) y1 = yn + ∆0

Ã · x = hf(yk) − ∆k−1

∆k = ∆k−1 + 2x

yk+1 = yk + ∆k

Ã · ∆m = h[f(ym) − ∆m−1]

y
n+1 = ym + ∆m



This staged sequence of matrix equations is executed at least 
twice with m=2 and m=6, which yields a 5th-order method.

The sequence may be executed a maximum of seven times, 
which yields a 15th-order method.  The exact number of times 
the staged sequence is executed depends on the accuracy 
requirements and the smoothness of the solution.  

Estimates of the accuracy of an integration step are made by 
comparing the solutions derived from different orders. This in 
turn permits adaptive stepsize control. 

Time integration



This method has a minimum cost of 1 Jacobian and 8 right-hand 
side evaluations, 2 matrix reductions, and 10 backsubstitutions 
for a time step that meets the specified integration accuracy.  

The cost increases by 1 matrix reduction + m backsubstitutions 
for every order increase.

The cost per step is at least twice as large as the simple Euler 
or Kaps-Rentrop method, but it may be more efficient globally 
if accurate steps are at least twice as big can be taken.

The Bader-Deuflard method is used in the codes I’m providing 
for these JINA lectures. 

Time integration



Interlude

The Medical Alchemist
Franz Christoph Janneck, 
(1703 - 1761)
Oil on copper - 13" x 9"



It was independently suggested by Bethe & von Weizsäcker in 
1939 that reactions of protons with carbon and nitrogen would 
provide competition with the PP-chains.

CNO cycles

They showed that a series of reactions, 
called the CN cycle, had the property 
that CN nuclei served only as catalysts 
for the conversion of hydrogen into 
helium but were not themselves 
destroyed.



The basic CN cycle is

Summing the particles before and after the cycle one obtains

the 12C nucleus only plays the role of a catalyst.

CNO cycles

12C(p, γ)13N(β+ν)13C

13C(p, γ)14N

14N(p, γ)15O(β+ν)15N

15N(p, α)12C

12C + 4H →
12 C +

4 He + 2β+
+ 2ν



The same cycle occurs with any of the 
four nuclei 12C, 13C, 14N, 15N as catalyst, 
or any mixture of them.

In fact, a mixture of those nuclei must 
soon result regardless of the initial 
composition.

The energy generated is related to the 
reciprocal of the time it takes to go 
around the cycle multiplied by 
(4MH - MHe4)c2 minus the energy loss in 
the two neutrinos. 

CNO cycles

12C

13N

13C 14N

15O

15N

Cycle 1

(p,!)

(p,!)

(p,!)(,e+!)

(,e+!)

(p,!)



It was later realized that all the stable oxygen isotopes 
provide additional cycles.

CNO cycles

12C

13N

13C 14N

15O

15N

17O

17F

16O

18F

18O 19F

Cycle 1 Cycle 2 Cycle 3

Cycle 4

(p,!)

(p,!)

(p,!)

(p,!)

(p,!)

(p,!)

(p,!)

(,e+!)

(,e+!)

(,e+!)

(,e+!)

(p,!)

(p,!)

(p,!)

(p,!)



Prior to 1952 it was thought that the CNO 
cycles were mostly responsible for the 
energy generated in the sun.

However, Edwin Salpeter showed that the 
reaction rate of the proton chain was 
about an order of magnitude larger than 
previously believed.

This brought about a reversal in the roles 
thought to be played by the two hydrogen 
burning mechanisms in the Sun.

CNO cycles



We have implicitly assumed that the beta decay lifetimes were 
negligible. For 0.2 < T9 < 0.5, the “hot” or “beta-limited” CNO 
cycles comes into play.

CNO cycles

12C

13N

13C 14N

15O

15N

Cycle 1

(p,!)

(p,!)

(p,!)(,e+!)

(,e+!)

(p,!)

17O

17F

16O

18F

18O 19F

Cycle 2 Cycle 3

Cycle 4

(p,!)

(p,!)

(p,!)

(p,!)

(,e+!)

(,e+!)

(p,!)

(p,!)
(p,!)

14O 18Ne

(p,!)

(p,!)

(,e+!)
(,e+!)

(p,!)

(!,p)



If T9 > 0.5, then one breaks out of the beta-limited CNO cycles 
and begins a journey on the rapid-proton capture process.

CNO cycles

12C

13N

13C 14N

15O

15N

Cycle 1

(p,!)

(p,!)

(p,!)(,e+!)

(,e+!)

(p,!)

17O

17F

16O

18F

18O 19F

Cycle 2 Cycle 3

Cycle 4

(p,!)

(p,!)

(p,!)

(p,!)

(,e+!)

(,e+!)

(p,!)

(p,!)
(p,!)

14O 18Ne

(p,!)

(p,!)

(,e+!)
(,e+!)

(p,!)

(!,p)

19Ne( )

rp process

CNO: T9 < 0.2 Hot CNO:  0.2 < T9 < 0.5 rp process: T9 > 0.5

(,e+ )



Download, compile, and run the basic CNO cycle code from 
www.cococubed.com/code_pages/burn.shtml 

Verify the ODEs and the Jacobian matrix elements CNO cycle 1.

Run the code for T = 30x106 K, ρ = 100 g/cm3, and an initial 
composition of X(12C)=X(16O)=0.1. Plot the abundance evolution. 
What isotope is most abundant when the CNO cycle is in 
equilibrium? How long does it take for hydrogen to be depleted?
Repeat for T = 300x106 K. What do you conclude?

Repeat the problem above with the beta-limited CNO code.

Tasks for the day



Plot the pp-chain and CNO cycle energy generation rate as a 
function of temperature for a density suitable for the center of 
the Sun and solar metallically. What do you conclude about the 
relative contributions of each to the Sun?
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