
Jim he allowed the stars was made, but I allowed 
they happened. Jim said the moon could’a laid 
them; well, that looked kind of reasonable, so I 
didn’t say nothin against it, because I’ve seen a frog 
lay almost as many, so of course it could be done.

                                     Mark Twain
                             The Adventures of Huckleberry Finn
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We may write our initial value problem as

The ODE coefficients span orders of magnitude since the 
reaction rates depend on high powers of the temperature, and 
since the abundances themselves may traverse orders of 
magnitude. As a result, nuclear reaction networks are “stiff”.

Ẏi =
∑

j

CiRjYj+
∑

jk

Ci

Cj !Ck!
ρNA Rjk Yj Yk+

∑

jkl

Ci

Cj !Ck!Cl!
ρ
2
N

2

A Rjkl Yj YkYl

ẏ = f(y)

or, in vector notation as
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Thus, with a few important exceptions, for each nucleus we 
need only consider twelve reactions linking it to its nuclear 
neighbors by the capture of an n, p, α or γ and release a 
different one of these four.

NP

N
P

 200 Isotopes

2134 Rates

91.9% Sparse

Flows (#/sec):

  1.85E+14

  1.34E+11

  9.75E+07

  7.07E+04

  5.13E+01

 -2.69E+01

 -3.70E+04

 -5.10E+07

 -7.03E+10

 -9.69E+13

 -1.34E+17

(n, )

( ,p)

( , )

( ,n)(p, )

(p,n)

( ,p)

(p, )

( , )

(n, )

( ,n)

(n,p)
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One of the most important consequences of changing the 
composition is the release (or absorption) of energy. The energy 
generation rate is given by

where Mic2 is the rest mass energy of species i. 

The mass of a nucleus is conveniently expressed in terms of 
tabulations of the the atomic mass excess

where     is the atomic mass unit. 

ε̇nuc = −

∑

i

NAMic
2
Ẏi − ε̇ν (erg g−1 s−1)

Mi = Aimµ + Mex,i

mµ
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This method has a minimum costs of 1 Jacobian and 
8 right-hand side evaluations, 2 matrix reductions, and 
10 backsubstitutions for a time step that meets the specified 
integration accuracy.  

The cost increases by 1 matrix reduction + m backsubstitutions 
for every order increase.

The cost per step is at least twice as large as the simple Euler 
or Kaps-Rentrop method, but it may be more efficient globally 
if accurate steps are at least twice as big can be taken.

The Bader-Deuflard method is used in the codes I’m providing 
for these JINA lectures. 

Last Lecture



If T9 > 0.5, then one breaks out of the beta-limited CNO cycles 
and begins a journey on the rapid-proton capture process.

CNO cycles

12C

13N

13C 14N

15O

15N

Cycle 1

(p,!)

(p,!)

(p,!)(,e+!)

(,e+!)

(p,!)

17O

17F

16O

18F

18O 19F

Cycle 2 Cycle 3

Cycle 4

(p,!)

(p,!)

(p,!)

(p,!)

(,e+!)

(,e+!)

(p,!)

(p,!)
(p,!)

14O 18Ne

(p,!)

(p,!)

(,e+!)
(,e+!)

(p,!)

(!,p)

19Ne( )

rp process

CNO: T9 < 0.2 Hot CNO:  0.2 < T9 < 0.5 rp process: T9 > 0.5

(,e+ )



Abundance Variables

Ye = (1− η)/2 = Z/A if fully ionized

neutron excess : η =
∑

(Ai − 2Zi)Yi

(pure protons) − 1 ≤ η ≤ 1(pure neutrons)

electron fraction : Ye =
ne

NAρ
=

∑
ZifiYi

Let fi be the fraction of isotope i that is ionized. 
fi = 0 = neutral atom. fi = 1 = fully ionized. 



Abundance Variables

µion =
1

∑
Yi

= A

µele =
1

∑
YiZifi

=
1

Ye

mean molecular weight : µ =

[

1

µion

+
1

µele

]

−1

=
1

∑

Yi(Zifi + 1)

µ =
A

Z + 1
if fully ionized



Since we must use an implicit integration method we’ll be 
solving (large) systems of linear equations. As the linear algebra 
will generally dominate the time to obtain a solution, we’ll want 
to use efficient solvers.

Over the next few slides we’ll briefly examine an example of a 
dense solver, direct sparse solver, and an iterative sparse solver.

Linear algebra



LEQS is a routine which solves a 
system of linear equations by 
Gaussian elimination, the method 
you probably first learned.

Matrix Ã is reduced to upper 
triangular form in tandem with 
a right-hand side b by Gaussian 
elimination, and backsubstitution 
on the upper triangular matrix 
yields the solution to Ã·x = b. 

Linear algebra



The origin of this legacy routine (LEQS) is somewhat obscure, 
in use by at least 1962, and is probably the most common linear 
algebra package presently used for evolving reaction networks. 

LEQS is used in the codes I’m providing for the JINA lectures.  

Linear algebra

Ford-Seattle
1962



The maximum element in each row serves as the pivot element, 
but no row or column interchanges are performed, so LEQS 
may become unstable if used on matrices that are not 
diagonally dominant.  

A small amount of effort is devoted to minimizing calculations 
with matrix elements that are zero. 

All Gaussian elimination routines have the disadvantage that for 
a staged sequence of right-hand sides, the entire matrix must 
be decomposed for each right-hand side.

Linear algebra



Suppose we are able to write the matrix Ã as a product of two 
matrices,            , where L is a lower triangular matrix 
(elements on the diagonal and below) and U is an upper 
triangular matrix (elements on the diagonal and above).

We could use such a decomposition to solve the linear set

By first solving             for y and then             for x. 

Linear algebra

Ã = L̃ · Ũ

Ã · x =

(

L̃ · Ũ

)

· x = L̃ ·

(

Ũ · x

)

= b

L̃ · y = b Ũ · x = y



What is the advantage of breaking up one linear set into two 
successive ones? 

One advantage is that the solution of a triangular system is 
trivial, as we have just seen in Gaussian elimination.

Another advantage is that once we have the LU decomposition 
of a matrix, we can solve for as many right hand sides as we 
want, one at a time. 

Linear algebra



There are two methods for solving sparse linear systems of 
equations; direct and iterative. 

Linear algebra



Direct methods for sparse matrices typically divide the solution 
of Ã·x = b into a symbolic LU decomposition, numerical LU 
decomposition, and a backsubstitution phase.  

Linear algebra

Domain decomposition 
for four processors for 
a torpedo launch 
calculation. 1996, NRL.



In the symbolic LU decomposition phase the matrix is not 
(usually) decomposed; only the steps to do so are stored. 

The pivot order is determined, and a sequence of decomposition 
operations which minimize the amount of fill-in is recorded.

Fill-in refers to zero matrix elements which become nonzero 
(e.g., a sparse matrix times a sparse matrix is generally a 
denser matrix).

Linear algebra



Since the nonzero pattern of a nuclear reaction network 
(generally) does not change, the symbolic LU decomposition is a 
one-time initialization cost for a given pivot ordering (diagonal).

In the numerical LU decomposition phase, a matrix with the 
same pivot order and nonzero pattern as a previously 
factorized matrix is numerically decomposed into its lower-
upper form. 

This phase must be done only once for each staged set of 
linear equations.

Linear algebra



In the backsubstitution phase, a set of linear equations is 
solved with the factors calculated from a previous numerical 
decomposition.  

The backsubstitution phase may be performed with as many 
right-hand sides as needed, and not all of the right-hand sides 
need to be known in advance.  

Most sparse matrix packages accept the nonzero entries of the 
matrix in three vectors, i, j, aij. Most sparse routubes consume 
about 50 to 99.999% less storage than a dense matrix.

Linear algebra



MA28 is the Coke classic of sparse matrix solvers.
hsl.rl.ac.uk/archive/hslarchive.html
Duff, Erisman & Reid  “Direct Methods for Sparse Matrices”.

UMFPACK is a modern, direct sparse matrix solver.
www.cise.ufl.edu/research/sparse/umfpack

Linear algebra



Iterative, or matrix-free, methods seek to minimize a function 
whose gradient is typically Ã·x - b and equal to zero when the 
function is minimized.  

These methods are attractive because they tend to only 
require matrix-times-vector operations and usually have smaller 
storage requirements than direct methods.

Linear algebra



However, the number of iterations required to converge to a 
solution is not known a priori, and generally increases with the 
number of unknowns. 

The total number of iterations, hence the overall speed, 
depends crucially on the initial guess and on the stringency of 
the convergence criteria.

Linear algebra



BiCG is described by Barret et al in “Templates for the Solution 
of Linear Systems: Building Blocks for Iterative Methods”.
netlib2.cs.utk.edu/linalg/html_templates/Templates.html

SPARSKIT is a modern, iterative sparse matrix solver. 
www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html  

Both methods generate a sequence of vectors for the matrix Ã 
and another sequence for the transpose matrix ÃT. These 
vector sequences are the residuals of the iterations and are 
made mutually orthogonal, or bi-orthogonal.

Linear algebra
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We’ve been considering situations where the temperature and 
density history are constant. This is the same as saying

Such conditions are called
“hydrostatic” burning, since 
the local energy release
doesn’t change the temperature
or density, as during the
hydrostatic phases of a star’s 
evolution.

We now wish to relax these assumptions.

Thermodynamic trajectories

Volume Constant

YA, YB, YC, YD, YE

Thermostat

dT

dt
= 0

dρ

dt
= 0



This presents us with a choice. We can evolve the temperature 
and density equations separately and then evolve the reaction 
network, or we can evolve the temperature and density 
equations simultaneously with the reaction network.

Thermodynamic trajectories

Density
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The first choice is called “operator splitting”, and assumes that 
the timescale for a temperature or density change is much 
longer than the burning timescale. Operator splitting is easy to 
implement and, by far, the most common choice.

Thermodynamic trajectories

Time Step

T
e
m
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n n+1 n+2

Too

Cool

Too

Hot

Just
Right

• Photodisintegration dominates
• Negative energy generation rate
• Material cools

• Electron capture dominates
• Positive energy generation rate
• Material heats

What the
temperature
should do

A Hydrodynamic-Burning Instability

An example when the 
assumption of loose 
coupling breaks down.



The second choice is called “unsplit”. It avoids the coupling 
between processes issue, but has the disadvantage of being 
more difficult to implement, particularly for implicit integrations.

Thermodynamic trajectories

Example of coupling 
three burning zones 
via diffusive processes.



The reaction network that I’m distributing for this JINA school 
uses the unsplit method. The hydrostatic burning ODEs dT/dt=0 
and dρ/dt=0 are easy to append to our reaction network. 
The Jacobian then looks like this:

Thermodynamic trajectories
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These entries from the 
temperature and density
derivatives of the reaction 
rates



Its usually improves mass and energy conservation to append 
the energy generation rate to our set of ODEs

Thermodynamic trajectories

ε̇nuc = −

∑

i

NAMic
2
Ẏi − ε̇ν

4

4





These entries from the 
temperature and density
derivatives of the reaction
rates

ENUC

ENUC

These entries from the
abundance derivatives



A type of burning called “explosive burning” models a region 
where a shock has heated and compressed the material to 
some peak temperature T0 and density ρ0. 

This region subsequently expands adiabatically (if the energy 
from shock heating exceeds that from nuclear burning) as a 
radiation dominated gas. 

The density and temperature decline with time over a 
hydrodynamic timescale (a free-fall timescale)

Thermodynamic trajectories

τT = 3τρτρ =
1

24πGρ
=

446.0
√

ρ



For explosive nucleosynthesis we thus take

Thermodynamic trajectories
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Nucleosynthetic changes in composition and the resultant 
energy release produce local changes in hydrodynamic 
quantities like pressure and temperature. 

The strongest of these local couplings is the release (or 
absorption) of energy and the resultant change in temperature. 

Changes in temperature are particularly important because of 
the exponential nature of the temperature dependence of 
thermonuclear reaction rates.

Thermodynamic trajectories



One way to model this in a reaction network is to deposit the 
energy generated into internal energy and derive an ODE that 
gives the temperature in accordance with an equation of state.

Thermodynamic trajectories

timmes
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Sometimes this model is called “self-heating”. From basic 
thermodynamics we have

applying the 1/dt operator and assuming the equation of state 
composition dependence is characterized    and     leads to

Thermodynamic trajectories

dE =
∂E

∂T
dT +

∂E

∂ρ
dρ +

∑ ∂E

∂Yi

dYi

εnuc = cV

dT

dt
+

∂E

∂ρ

dρ

dt
+

∑ ∂E

∂A

∂A

∂Yi

dYi

dt
+

∑ ∂E

∂Z

∂Z

∂Yi

dYi

dt

A Z



Solving for dT/dt yields our self-consistent temperature ODE

Thermodynamic trajectories

dT

dt
=

1

cV

[

εnuc −

∂E

∂ρ

dρ

dt
−

∂E

∂A
A

2
∑ dYi

dt
−

∂E

∂Z
A

∑

(Zi − Z)
dYi

dt

]

dρ

dt
= 0

This self-heating mode 
can (and has) been used 
(in operator split form) 
for x-ray burst models

Fang Peng & Ed Brown
2003



One-dimensional detonations

Thermodynamic trajectories

FuelAsh Reaction Zone

V > Csound



Given the thermodynamics of the fuel, and that the ashes exist 
in an equilibrium state, the Chapman-Jouguet (1890) solution 
follows from a consistent solution to

Thermodynamic trajectories

P2 = P1 − (v2ρ2)
2

(

1

ρ1

−

1

ρ2

)

E2 =
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2

[
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(
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−

1

ρ2

)]

+ E1 + qburn
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i=1

Xi = 1
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i=1

Xi Zi
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The CJ solution gives the detonation front speed and the ash 
thermodynamics.

The CJ solution doesn’t tell you about the width of the 
fuel-ash region, spatial variations of variables, or if the solution 
is a self-sustaining detonation.

Thermodynamic trajectories



The Zeldovich-Von Neumann-Doring (1943) solution follows from 
integrating three ODEs:

These can be added (with some degree of difficulty) to a 
reaction network.

Thermodynamic trajectories
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The ZND solution gives the width of the fuel-ash region, 
spatial variations of the quantities, the self-sustaining solution, 
and global integrals which reduce to the CJ solution.

Thermodynamic trajectories



One also encounters cases where the post-processing of a 
previously calculated thermodynamic trajectory is desired.

In this case one interpolates T(t) and ρ(t) for time point 
demanded by the integration, and one uses the hydrostatic 
ODEs dT/dt=0 and dρ/dt=0.

Thermodynamic trajectories
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While not the most efficient, accurate integrations can be 
obtained for any arbitrary thermodynamic trajectory.

Thermodynamic trajectories
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Integration of the ordinary differential equations which 
represent the abundance levels of a set of isotopes serves two 
functions in models of stellar events.  

The primary function, as far as the hydrodynamics is 
concerned, is to provide the magnitude and sign of the 
thermonuclear energy generation rate.  

The second function is to describe the evolution of the 
abundance levels of the nuclear species.  These abundance 
levels are, of course, fundamental to our understanding of the 
origin and evolution of the elements.

Alpha-chain networks



Obtaining accurate values for the energy generation rate is 
expensive in terms of computer memory and CPU time. 

The largest block of memory in a stellar hydrodynamic program 
is reserved for storing the abundances at every grid point.  

This memory requirement can be quite restrictive for 3-D 
models on present parallel computer architectures.

Even with modern methods for solving reaction networks, 
evolving the abundances begins to dominate the total cost of a 
multi-D model when the number of species is about 30.  

Alpha-chain networks



To decrease the resources usage means making a choice 
between having fewer isotopes in the reaction network or 
having less spatial resolution.

The general response to this tradeoff has been to evolve a 
limited number of isotopes, and thus calculate an approximate 
thermonuclear energy generation rate. 

The set of 13 nuclei most commonly used for this purpose are 
4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni.

This minimal set of nuclei, usually called an α-chain network, 
can reasonably track the abundance levels from helium burning 
through nuclear statistical equilibrium.

Alpha-chain networks



  13 Isotopes

  55 Rates

61.5% Sparse

Flows (#/sec):

  4.15E+09

  3.18E+07

  2.43E+05

  1.86E+03

  1.43E+01

 -9.16E+00

 -1.20E+03

 -1.56E+05

 -2.04E+07

 -2.67E+09

 -3.49E+11

Alpha-chain networks



More importantly from a hydrodynamics standpoint, an α-chain 
reaction network gives a thermonuclear energy generation rate 
that is generally, but not always, within 20% of the energy 
generation rate given by larger reaction networks.  

In essence, one gets most of the energy generated for most 
thermodynamic conditions at a fraction of the computational 
cost (memory + CPU).

Alpha-chain networks
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A definition of what we mean by an α-chain reaction network 
is prudent. 

A strict α-chain reaction network is only composed of (α,γ) and 
(γ,α) links among the 13 isotopes 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 
32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and 56Ni.   

It is essential, however, to include (α,p)(p,γ) and (γ,p)(p,α) links 
in order to obtain reasonably accurate energy generation rates 
and abundances when the temperature exceeds ~2.5 x 109 K. 

Alpha-chain networks



At these elevated temperatures the flows through the 
(α,p)(p,γ) sequences are faster than the flows through (α,γ) 
channels. An (α,p)(p,γ) sequence is, effectively, an (α,γ) reaction 
through an intermediate isotope.

In the α-chain reaction network we’ll use in these lectures, we 
include 8 (α,p)(p,γ) sequences plus the corresponding inverse 
sequences by assuming steady-state proton flows through the 
intermediate isotopes 27Al, 31P, 35Cl, 39K, 43Sc, 47V, 51Mn, and 55Co.

This strategy permits inclusion of (α,p)(p,γ) sequences without 
evolving the proton or intermediate isotope abundances. 

Alpha-chain networks



  19 Isotopes

  78 Rates

69.0% Sparse

Flows (#/sec):

  6.00E+09

  4.05E+07

  2.73E+05

  1.85E+03

  1.25E+01

 -1.19E+01

 -1.76E+03

 -2.60E+05

 -3.86E+07

 -5.71E+09

 -8.46E+11

Alpha-chain networks



Download, compile, and run the 13 isotope α-chain code from 
www.cococubed.com/code_pages/burn.shtml 

Verify the ODEs and the Jacobian matrix elements for the 
triple-alpha and the 12C(α,γ)16O reactions.

Run the code in hydrostatic mode for the initial conditions 
T = 3x109 K, ρ = 109 g/cm3, X(12C) = X(16O) = 0.5. Plot the 
abundance evolution. What isotope dominates when? Now run 
the code in its explosive (adiabatic) mode using the same initial 
conditions. Compare and contrast the results with the 
hydrostatic run.

Tasks for the day
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