

MA1: Stars and Stellar Explosion Models

NSF Physics Frontiers Center

How do the properties of our model stars vary with respect to the composite uncertainties?

Mass loss

He

Mass resolution

Time resolution

Isotope count

Vields

S

Mixing

Reactionrates

Opacity

$\sum d$	5 = ?	
		$20{ m M}_{\odot}$
	$\dot{M} \neq 0$	

$\mathrm{He_{core}} \ [\mathrm{M}_{\odot}]^{\mathrm{a,b}}$	$2.82^{2.82}_{2.79}$	$2.77^{2.78}_{2.72}$	$4.67_{4.59}^{4.70}$	4.
$C_{core} [M_{\odot}]$ We do	n't know the	full answer	yet, $_{4.194.04}^{4.75}$	4.
$O_{core} [M_{\odot}]$	$1.41^{1.43}_{1.35}$	$1.40^{1.42}_{1.32}$	1.54 $^{2.47}_{1.43}$	
		$1.15_{1.08}^{1.39}$	$1.38_{1.30}^{1.65}$	
	$0.505_{\scriptstyle 0.505}^{\scriptstyle 0.505}$	$0.505_{\scriptstyle 0.505}^{\scriptstyle 0.505}$	$0.505_{\scriptstyle 0.505}^{\scriptstyle 0.505}$	
	$0.499_{0.499}^{0.500}$	$0.499_{0.499}^{0.500}$	$0.499_{0.499}^{0.500}$	
	$0.499_{0.498}^{0.500}$	$0.499_{0.498}^{0.500}$	$0.499_{0.498}^{0.500}$	
	$0.486_{0.475}^{0.498}$	$0.486_{0.475}^{0.498}$	$0.488_{0.483}^{0.498}$	

Pop III with JWST

STScI Press Release 25Apr2018

Carbon ignition

Impacts the LIGO/GAIA derived compact object initial mass function.

Oxygen-carbon shell mergers

3D hydro simulation \rightarrow 1D diffusion coefficient \rightarrow post-processing of stellar models \rightarrow galactic chemical evolution.

O-shell ingestion events can be a robust site for P, Cl, K ,Sc and p-process species.

Probing the isotopic evolution

A ~20 kt liquid scintillator detector would typically observe ~10's of ν in the final hours of a star's life at 1 kpc, with ~30% from β processes.

N ¹ E

Continuum

Cas A NuSTAR + Chandra

Core-Collapse SN: Low-order mode engines

Si/Mg Jet

Fe

Grefenstett et al 2017

Electron-captures in supernovae

A JINA-CEE led, comprehensive library of weak reaction rates for astrophysical models.

~70 nuclei in the diamondshaped region at N~50 are drivers for changes in the p/n ratio during core-collapse. New experimental efforts are aimed at these nuclei.

See Fernando Montes's radioactive ion beam talk. See Sanjay Reddy's dense matter physics talk.

R-process in jet driven supernovae

Kink unstable 3D models predict the third r-process peak is under produced.

Gravitational wave signals from supernovae

Between ~200 and ~400 ms after bounce, the GW signal represents a g-mode. After ~400 ms the dominant GW signal is the quadrupole oscillation (I = 2, f-mode). High-frequency noise in GW spectrograms above the main signal are p-modes.

Critical community-driven software and data infrastructure for NSF and NASA science.

