10Oct2012

126

Connecting Nuclear Astrophysics with

Exoplanets and Astrobiology

Frank Timmes

Outline:

- Waterworld or desertworld: the case of ²⁶Al & ⁶⁰Fe
- 2) Non-solar abundances and the habitable zone

28 20

How are key elements produced and delivered for

...elements that shape planetary formation e.g., ²⁶Al, ⁶⁰Fe ?

...elements that drive planetary processes e.g., ⁴⁰K, ^{235,238}U, ²³²Th ?

...biologically important elements e.g., C, N, P, Fe, Mo ? What controls the volatile content of exoplanetary systems?

²⁶Al and ⁶⁰Fe: Sources of Heat

Differentiates and Devolatilizes Silicate Planetesimals

 $^{26}AI \rightarrow {}^{26}Mg^{*}$ t_{1/2} = 0.714 ± 0.06 Myr ${}^{60}\text{Fe} \rightarrow {}^{60}\text{Co}^* \rightarrow {}^{60}\text{Ni}^*$ t_{1/2} = 2.62 ± 0.04 Myr ²⁶Al was introduced in astrophysics by Harold Urey in 1955 as a heat source capable of melting chondritic meteorites having radii of 100-1000 km on million year time scales.

Harold Urey, Cesare Emiliani, G.J.Wasserburg 1953

This idea was confirmed from measurements of excess ²⁶Mg in the differentiated Pipliya Kalan meteorite by Srinivasan et al 1999.

What controls the volatile content of exoplanetary systems?

Tentative Answer: The abundance of ²⁶Al and ⁶⁰Fe in a solar system controls volatile delivery to terrestrial planets.

Earth's water came from asteroids.

Heating by radioactive decay of ²⁶Al and ⁶⁰Fe devolatilizes asteroids.

If our solar system had $10 \times \text{more}^{26}$ Al and 60 Fe, Earth would likely have < 0.2 oceans. Desertworld.

If our solar system had $10 \times less {}^{26}Al$ and ${}^{60}Fe$, Earth would likely have > 5 oceans. Waterworld.

Earth had the right amount of ²⁶Al and ⁶⁰Fe to be about half land and half water.

Young et al 2009 find the most reliable indicator of the presence of ²⁶Al in unmixed core-collapse ejecta is a low, ~0.05, S/Si ratio.

Curiously, the bioessential element phosphorous reaches its maximum abundance in the same regions in massive stars.

Brief Interlude

Follow the Elements

Astrobiology at Arizona State University

What impacts do nuclear physics and stellar abundance variations have on stellar habitable zones?

The high-quality spectra required for radial velocity planet searches are well suited to providing abundances for a wide array of elements in large samples of stars.

Abundance ratios of the most common elements relative to Fe vary by more than a factor of two in planet host candidates.

This level of variation has a substantial impact on the evolution of the host star and the extent of its habitable zone.

The effects of varying [O/Fe] over the observed range can vary the habitability lifetimes for some classes of orbits by gigayears.

Nuclear Astrophysics - experimental, observational, and theoretical - can, and should, embrace opportunities to apply itself to exoplanets and astrobiology.

with apologies to L. Frank Baum