Hunting the Progenitors of Supernovae Type Ia

Frank Timmes

Supernova Type Ia (SNIa) play a key role in stellar and galaxy evolution and cosmology

Distance indicators

Element factories

Cosmic-ray accelerators

Kinetic energy sources

Endpoints of stellar binary evolution

SNIa occur at a rate of \sim 30/s in the observable universe, but identification of what is exploding remains unknown this is the outstanding mystery in the field. SNIa are defined by their spectra:I) the lack of hydrogen lines2) a strong Si II absorption feature

Once defined, here are several observational characteristics which may help in the search for progenitors:

Nearly 90% of all SNIa form a homogeneous class in terms of their spectra, light curves, and peak absolute magnitudes.

Normalized Flux (F_{λ}) + Const.

Near maximum light, spectra are characterized by O-Ca at high velocity (8k-30k km s⁻¹).

In the late, nebular phase, the spectra are dominated by lines of iron.

There exist a number of correlations between different pairs of observables, including one between the absolute magnitude and the shape of the light curve.

Brighter is broader.

This can be used to correct for intrinsic variations in the peak luminosity to give a standard candle.

After correction, the dispersion in luminosity distance is \leq 7%.

Tycho Supernova Remnant: NASA's Spitzer, Chandra, & Spain's Calar Alto

Green & Yellow - iron and silicon Blue - shocked electrons Red - dust

Age: 442 years Distance: ~ 7500 ly Diameter: ~ 0.8' (18 ly) Expansion: ~ 0.3''/year A successful model starting from a carbon+oxygen white dwarf must make

 $0.1 - 1.0 \text{ M}_{\odot}$ 56Nifor the light curve $0.2 - 0.4 \text{ M}_{\odot}$ Si, S, Ar, Cafor the spectrum $< 0.1 \text{ M}_{\odot}$ 54Fe + 58Nifor the nucleosynthesisNot too much O close to 56Nifor the spectrumAllow for some diversityfor fun

Single-Degenerate channel

The relative frequency of these channels in unknown.

Double-Degenerate channel

Mergers:

Collisions:

Standard paradigm single-degenerate pathway:

LANL 1945

NASA

Standard double-degenerate merger pathway:

angular momentum loss

surface detonation?

supernova

Guillochon et al 2010

Raskin et al 2012

A double-degenerate collision pathway:

Variations in the peak luminosity may originate in part from a scatter in the composition of the main-sequence stars that become white dwarfs.

A main-sequence star's initial metallicity comes from the CNO and ⁵⁶Fe inherited from its ambient interstellar medium.

All the CNO piles up at ¹⁴N during hydrogen burning, because ¹⁴N(p,g) is the slowest step in the CNO cycle.

During helium burning all of the ¹⁴N is converted into ²²Ne by ¹⁴N (a,g) ¹⁸F (β^+ , ν_e) ¹⁸O (a,g) ²²Ne.

Pileups at ^{14}N and ^{22}Ne have been repeatedly verified for ~40 years. This is standard stellar evolution.

Mass and charge conservation set the white dwarf's neutron enrichment.

$$\sum_{i=1}^{n} \mathbf{X}_{i} = 1 \qquad \mathbf{Y}_{e} = \sum_{i=1}^{n} \frac{\mathbf{Z}_{i}}{\mathbf{A}_{i}} \mathbf{X}_{i}$$

$$X(^{22}Ne) = 22\left[\frac{X(^{12}C)}{12} + \frac{X(^{14}N)}{14} + \frac{X(^{16}O)}{16}\right]$$

$$Y_e = \frac{10}{22} X(^{22}Ne) + \frac{26}{56} X(^{56}Fe) + \frac{1}{2} \left[1 - X(^{22}Ne) - X(^{56}Fe) \right]$$

Assuming the ²²Ne and ⁵⁶Fe are uniformly distributed.

SNIa models make most of their 56 Ni in nuclear statistical equilibrium between 0.2 - 0.8 M_{sun}, where weak reactions don't change the number of neutrons since they occur on time-scales longer than the explosion.

If ⁵⁶Ni and ⁵⁸Ni are the only species in NSE, mass and charge conservation

$$\sum_{i=1}^{n} \mathbf{X}_{i} = 1 \qquad \mathbf{Y}_{e} = \sum_{i=1}^{n} \frac{\mathbf{Z}_{i}}{\mathbf{A}_{i}} \mathbf{X}_{i}$$

imply a linear relationship between the mass fraction of ${}^{56}Ni$ and Y_e :

$$X(^{56}Ni) = 1 - X(^{58}Ni) = 58Y_e - 28$$

We can set the final Y_e equal to the initial Y_e of the white dwarf since weak interactions are not dominant where most of the ⁵⁶Ni is made.

$$X(^{56}Ni) = 1 - 0.057 \frac{Z}{Z_{\odot}}$$

Observations find consistency with the analytical result, but the trend is smaller than predicted and there is considerable scatter.

Constraining a metallicity dependence is challenging:
I) assumes galaxy metallicity = supernova metallcity
2) may be a stronger dependence on mean stellar age

MESA

ASH

CSS

MESA

GYRE

Computational

Tools

If the composition of the white dwarf has an observable effect on the ⁵⁶Ni production and thus the SNIa light curve, it could have an effect on other elements as well.

From observed Si, S, Ca, and Fe abundances, we have developed a new tool which applies the QSE relations (in reverse!) to determine all the abundances and a measure of Y_e in the silicon group regions of individual SNIa.

The method begins with mass & charge conservation, and the constraints for a two-cluster QSE:

 $Y_n + Y_p + 28Y_{28Si} + 32Y_{32S} + 40Y_{40Ca} + 54Y_{54Fe} + 58Y_{58Ni} = 1$ $Y_p + 14Y_{28Si} + 16Y_{32S} + 20Y_{40Ca} + 26Y_{54Fe} + 28Y_{58Ni} = Y_e$ $Y_{SiG} = Y_{28Si} + Y_{32S} + Y_{40Ca} \qquad Y_{FeG} = Y_{54Fe} + Y_{58Ni}$

Then, from the defining QSE relations:

$$\frac{Y_{A,Z}}{Y_{A',Z'}} = f(\rho,T)Y_p^{Z-Z'}Y_n^{A-A'-(Z-Z')}$$

$$f(\rho,T) = \frac{G_{A,Z}}{G_{A',Z'}} \left(\frac{\rho N_A}{\theta}\right)^{A-A'} \exp\left(\frac{B-B'}{kT}\right)$$

$$\theta = \left(\frac{m_{\rm u}kT}{2\pi\hbar^2}\right)^{\frac{3}{2}}$$

We derive our first (nearly trivial) result

$$\Phi(T) = \frac{Y_{28\text{Si}}}{Y_{32\text{S}}} \left(\frac{Y_{40\text{Ca}}}{Y_{32\text{S}}}\right)^{1/2} = \exp\left(\frac{-1.25}{T_9}\right)$$

Measuring Φ at a single epoch from the abundance ratios allows a test of whether the SiG material was produced in a QSE state.

Measuring Φ at multiple epochs when silicon features dominate the spectrum allows trends in the QSE temperature to be assessed.

Measurement of four quantities Y_{285i} , Y_{325}/Y_{285i} , Y_{40Ca}/Y_{325} , Y_{54Fe}/Y_{285i} is a sufficient basis to solve for all the abundances in the silicon-rich region of SNIa.

$$Y_e = Y_{28\mathrm{Si}} \left[14 + 16 \frac{Y_{32\mathrm{S}}}{Y_{28\mathrm{Si}}} + 20 \frac{Y_{40\mathrm{Ca}}}{Y_{32\mathrm{S}}} \frac{Y_{32\mathrm{S}}}{Y_{28\mathrm{Si}}} + 26 \frac{Y_{54\mathrm{Fe}}}{Y_{28\mathrm{Si}}} + 28 \Psi \frac{Y_{32\mathrm{S}}}{Y_{28\mathrm{Si}}} \frac{Y_{54\mathrm{Fe}}}{Y_{28\mathrm{Si}}} \right]$$

Accurate determination of Y_{28Si} , Y_{32S}/Y_{28Si} , Y_{40Ca}/Y_{32S} , and Y_{54Fe}/Y_{28Si} is sufficient to determine Y_e to ~6% because these abundances account for ~94% the QNSE composition.

Synthetic spectra for the W7-like models with 0 to 4 times solar 22Ne.

Hunting the Progenitors of Supernovae Type Ia

Advances (plus a little serendipity) over the next decade should enable us to decipher the progenitors of Supernovae Type Ia.

- I) Different Si, S, Ca ratios
- 2) Tidal tails
- 3) Significant unburned carbon + oxygen
- 4) Early gamma-ray light curve or line profiles
- 5) Narrow HI in emission or absorption
- 6) Interaction with circumstellar medium in radio or x-rays
- 7) Frequency of SNIa as a function of redshift