kitp 08feb2024 stars with lars

fxt

OPEN ACCESS

Stellar Neutrino Emission across the Mass-Metallicity Plane

Ebraheem Farag¹, F. X. Timmes¹, Morgan T. Chidester¹, Samalka Anandagoda², and Dieter H. Hartmann²

Abstract

We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. ...

ApJS, 30 pages, 23 figures, 4 tables, 260 references.

Global results

Low mass stars at 1 and 6 metallicities

High mass stars at 1 and 6 metallicities

Simple Stellar Population cluster models

THE ASTROPHYSICAL JOURNAL, 418: L21–L24, 1993 November 20 © 1993. The American Astronomical Society. All rights reserved. Printed in U.S.A.

RINGS OF FIRE: NUCLEAR BURNING AS THE ORIGIN OF SUB-HERTZ NOISE AND WEAK X-RAY BURSTS IN ACCRETING NEUTRON STARS

LARS BILDSTEN

Theoretical Astrophysics, Mail Code 130-33, California Institute of Technology, Pasadena, CA 91125; e-mail: I: bildsten@tapir.caltech.edu Received 1993 August 12; accepted 1993 September 2

ABSTRACT

We identify a new regime of time-dependent nuclear burning on accreting neutron stars. Only two regimes were previously recognized...

All the initial CNO piles up at ¹⁴N during H burning because ¹⁴N(p,γ)¹⁵O

is the slowest step in the CNO cycle.

During He burning, ${}^{14}N(\alpha,\gamma){}^{18}F(,e^+v_e){}^{18}O(\alpha,\gamma){}^{22}Ne.$

Connect ²²Ne to something else, and one has a connection between that something else and the initial metallicity.

THE ASTROPHYSICAL JOURNAL, 590:L83–L86, 2003 June 20 © 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE F. X. TIMMES,^{1,2} Edward F. Brown,^{1,3} and J. W. Truran^{1,2,3}

ABSTRACT

We explore the idea that the observed variations in the peak luminosities of Type Ia supernovae (SNe Ia) originate in part from a scatter in metallicity of the main-sequence stars that become white dwarfs...

Connecting ²²Ne to ⁵⁶Ni ...

THE ASTROPHYSICAL JOURNAL, 910:24 (17pp), 2021 March 20

© 2021. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

On the Impact of ²²Ne on the Pulsation Periods of Carbon–Oxygen White Dwarfs with Helium-dominated Atmospheres

Morgan T. Chidester^{1.2}, F. X. Timmes^{1.2}, Josiah Schwab³, Richard H. D. Townsend⁴, Ebraheem Farag^{1.2}, Anne Thoul⁵, C. E. Fields^{2.6}, Evan B. Bauer^{7.8}, and Michael H. Montgomery⁹

Abstract

We explore changes in the adiabatic low-order g-mode pulsation periods of 0.526, 0.560, and 0.729 M_{\odot} carbon–oxygen white dwarf models with helium-dominated envelopes due to the presence, absence, and enhancement of ²²Ne in the interior...

Connecting ²²Ne to WD pulsations ...

OPEN ACCESS

Stellar Neutrino Emission across the Mass-Metallicity Plane

Ebraheem Farag¹, F. X. Timmes¹, Morgan T. Chidester¹, Samalka Anandagoda², and Dieter H. Hartmann²

Abstract

We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. ...

ApJS, 30 pages, 23 figures, 4 tables, 260 references.

Global results

Low mass stars at 1 and 6 metallicities

High mass stars at 1 and 6 metallicities

Simple Stellar Population cluster models

Across the mass-metallicity plane we identify the sequence

initial CNO \rightarrow ¹⁴N \rightarrow ²²Ne \rightarrow ²⁵Mg \rightarrow ²⁶Al \rightarrow ²⁶Mg \rightarrow ³⁰P \rightarrow ³⁰Si

as making primary contributions to the neutrino luminosity at different phases of evolution.

MESAI	MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA)	
2011	BILL PANTON ¹ , Lars Bildsten ¹ , Aaron Dotter ^{2,3} , Falk Herwig ² , Pierre Lesaffre ³ , and Frank Timmes ⁴	
	THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 208:44 (43pp), 2013 September © 2013. The American Astronomical Society. All rights reserved. Pointed in the U.S.A.	doi:10.1088/0067-0049/208/1/4
MESA II	MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS BILL PANTON ¹ , MATTEO CANTIELLO ¹ , PHIL ARKAS ² , LARS BILDSTEN ^{1,3} , EDWARD F. BROWN ⁴ , AARON DOTTER ⁵ , CHRINTOPHER MANKOVICH ³ , M. H. MONTGOMERY ⁶ , DENNIS STELLO ⁷ , F. X. TIMMES ⁸ , AND RICHARD TOWNSEND ⁹	
2013		
	THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 220:15 (44pp), 2015 September © 2015 The Amotican Autonomical Society. All rights reserved.	doi:10.1088/0067-0049/220/1/15
MESA III	MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS	
2015	BILL PANTON ¹ , PABLO MARCHANT ² , JOSIAH SCHWAB ^{3,4} , EVAN B. BAUER ⁵ , <mark>LARS BILDSTEN^{1,5}</mark> , MATTEO CANTIELLO ¹ , LUC DESSART ⁰ , R. FARMER ⁷ , H. HU ⁸ , N. LANGER ² , R. H. D. TOWNSEND ⁷ , DEAN M. TOWNSLEY ¹⁰ , AND F. X. TIMMEN ⁷	
	THE ASTROPHYSICAL JOURNAL SUPERMENT SERIES, 234:34 (50pp), 2018 February 0 2018. De America Astronomical Society. All (glue recred.	https://doi.org/10.3847/1538-4365/aus.5u8
MESA IV	Constant Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions	
2018	Bill Paxton ¹ , Josiah Schwah ²⁻¹³ ⊕, Evan B. Bauer ³ ⊕, Lars Bildsten ^{1,3} , Sergei Blinnikov ^{4,5,6} , Paul Duffell ⁷ ⊕, R. Farmer ^{8,9} ⊕, Jared A. Goldberg ¹ , Pablo Marchant ¹⁰ ⊕, Elena Sorokina ¹³ , Anne Thoul ¹¹ , Richard H. D. Townsend ¹² ⊕, and F. X. Timmes ² ⊕	
	The Astronomyscal Journal Supplement Series, 243:10 (44pp), 2019 July 0 2010 The American American Astronomical Society. OPEN ACCESS	https://doi.org/10.3847/1538-4365/ab2241
MESA V	Commute Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation	
2019	Bill Paxton ¹ , R. Smolec ² , Josiah Schwab ^{3,18} , A. Gautschy ⁴ , Lars Bildsten ^{1.5} , Matteo Cantiello ^{6,7} , Aaron Dotter ⁸ , R. Farmer ^{3,10} , Jared A. Goldberg ⁵ , Adam S. Jermyn ¹ , S. M. Kanbur ¹¹ , Pablo Marchan ¹² , Anne Thou ¹³ , Richard H. D. Townsend ¹⁴ , William M. Woll ^{45,16} , Michael Zhang ¹⁷ , and F. X. Timmes ¹⁶	
	The ASTROPHYSICAL JOURNAL SUPPLEMENT STREES, 265:15 (38pp), 2023 March 2 2023 The Audoria Published by the American Astronomical Sociev.	https://doi.org/10.3847/1538-4365/acae8d
	OPEN ACCESS	GrassMark
MESA VI	Modules for Experiments in Stellar Astrophysics (ME Energy Conservation, Automatic Differentia	SA): Time-dependent Convection, ation. and Infrastructure
2023	Adam S. Jermyn ¹ , Evan B. Bauer ² , Josiah Schwab ³ , R. Farmer ⁴ , Warick H. Ball ⁵ , Earl P. Bellinger ^{4,6} , Aaron Dotter ⁷ , Meridith Joyce ^{3,3,10} , Pablo Marchant ¹¹ , Joey S. G. Mombarg ¹¹ , William M. Woll ¹² , Tin Long Sunny Wong ¹³ , Giulia C. Cinquegrant ^{1,13,10} , Foin Farrell ¹⁴ , R. Smolet ²³ , Anne Thoul ^{14,6} , Matteo Cantiell ^{10,12,10} , Falk Hervig ¹³ , Odder Iotoga ^{2,22,30} , Lars Bidden ^{13,23} , Richard H. D. Townsend ²⁵ , and	

F. X. Timmes²⁶

Farag et al 2024, Figure 3

© 2023. The Author(s). Published by the American Astronomical Society.

Stellar Neutrino Emission across the Mass-Metallicity Plane

Ebraheem Farag¹, F. X. Timmes¹, Morgan T. Chidester¹, Samalka Anandagoda², and Dieter H. Hartmann²

Abstract

We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. ...

ApJS, 30 pages, 23 figures, 4 tables, 260 references.

Global results

Low mass stars at 1 and 6 metallicities

High mass stars at 1 and 6 metallicities

Simple Stellar Population cluster models

Farag et al 2024, Figure 5

Thank you for your time and attention.

stars with lars