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Why are white dwarfs important?

The Sun will become one  
Age of the universe 
Probe of strong equivalence principle  
Progenitors of supernovae 
Element factories 
Kinetic energy sources for galaxies 
Records the nuclear physics of a star’s life 
Probes of electron degenerate material 



Sirius, only ~8.60 ± 0.04 light-years from Earth, is the fifth closest stellar system.

The Egyptians used Sirius, the brightest star in the sky and which rose with the 
Sun  in early July when the Nile was in flood, to mark the first day of a New Year.

Credit: NASA, ESA, G. Bacon



In 1844 Friedrich Bessel deduced from changes in the 
orbit that Sirius had an unseen companion.  
 
In 1862, Alvan Clark first observed the faint 
companion during testing of the new 18.5-inch 
refractor telescope in the Dearborn Observatory at 
Northwestern University.
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Strong Equivalence Principle
says accelerations 
should be the same.

Alternative theories of gravity
mostly say the accelerations 
should be different

The outer white dwarf’s
gravity accelerates  the pulsar
and inner white dwarf.

Microsecond accurate measurements
of the radio pulse arrival times show
no difference between the accelerations
to 3 parts per million. 
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Let’s make a white dwarf.



Modules for Experiments in Stellar Astrophysics

MESA solves the 1D fully coupled structure, mixing, and 
composition equations governing stellar evolution.
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Credit:Travis Metcalfe and Ruth Bazinet
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M =0.59 M⊙    L = 0.137 L⊙    Teff ~ 29,000 K



KIC 8626021

Constellation: Cygnus

distance~ 1000 ly



Let’s shake a white dwarf.
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Like a sound wave resonating in an organ pipe, sound waves can resonate inside a star. 
By measuring these wave  frequencies, we learn about the star’s internal structure.

We see these oscillations as subtle, 
rythmic changes in the star’s luminosity.

Vibrations are generated by ionization 
and turbulence near the star’s surface.

The vibrations penetrate into the interior, 
setting up resonances at  frequencies dependent 
on density, temperature, and abundance profiles.

Resonant frequencies can vary from 
one every few minutes in Sun-like stars 
to one every few hundred days in red giants.



GYRE solves the system of equations governing small 
periodic perturbations to an equilibrium stellar state.



ξr(r, θ, ϕ, t) = Re [ 4π ξ̃r(r) Ym
ℓ (θ, ϕ) exp(−iωt)]

ξh(r, θ, ϕ, t) = Re [ 4π ξ̃h(r)r∇h Ym
ℓ (θ, ϕ) exp(−iωt)]

f′�(r, θ, ϕ, t) = Re [ 4π f̃′�(r) Ym
ℓ (θ, ϕ) exp(−iωt)]

Solutions take the form

Solutions which satisfy the boundary conditions only occur for 
discrete values of the frequency ω - these are the 
eigenfrequencies of the star.



Credit: Stéphane Charpinet



Cocktails to fit a white dwarf model’s eigenfrequencies to those 
derived from the Kepler mission’s photometric data:

1) Evolve a model from the main sequence to a white dwarf 
     with the observed surface properties

2) Evolve a hot white dwarf  to the observed surface 
      properties

3) Flexible templates of the interior profiles
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Template model for KIC 08626021

Giammichelle et al 2018
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We find the low order g-mode frequencies differ by up to  
≃ 70 μHz over the range of Kepler observations for  
KIC 08626021.  

By neglecting the proper thermal structure of the star 
(e.g., accounting for plasmon 𝜈 losses), model frequencies 
calculated by assuming an Lr∝Mr profile may have 

uncorrected, effectively random errors at ≃ tens of μHz.  

Extrapolating known uncertainties, a 30 μHz error causes 
a ~12% error in the white dwarf mass, a ~9% error in its 
radius, and a ~3% error in its central oxygen abundance.
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Questions and Discussion
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Critical community-driven software and data 
for new science.
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