|
|||
Home Astronomy Research 2025 Neutrinos From De-excitation 2024 Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments AAS Journals 2025 AAS YouTube 2025 AAS Peer Review Workshops 2025 ASU Energy in Everyday Life 2025 MESA Classroom Outreach and Education Materials Solar Systems Astronomy Energy in Everyday Life Geometry of Art and Nature Calculus Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
$ \def\drvop#1{{\frac{d}{d{#1}}}} \def\drvf#1#2{{\frac{d{#1}}{d{#2}}}} \def\ddrvf#1#2{{\frac{d^2{#1}}{d{#2}^2}}} \def\partop#1{{\frac{\partial}{\partial {#1}}}} \def\ppartop#1{{\frac{\partial^2}{\partial {#1}^2}}} \def\partf#1#2{{\frac{\partial{#1}}{\partial{#2}}}} \def\ppartf#1#2{{\frac{\partial^2{#1}}{\partial{#2}^2}}} \def\mpartf#1#2#3{{\frac{\partial^2{#1}}{\partial{#2} \ {\partial{#3}}}}} $ A pdf of this note is avaliable. One may ask why second derivatives are needed. If the equations being evolved contains derivative quantities, for example the $\partial e / \partial Y_i$ ``chemical potential'' term from the first law of thermodynamics, and if an implicit time integration is desirable, for example the system is stiff, then the Jacobian matrix will contain terms such as $\partial^2 e / \partial Y_i^2$. Its been previously shown that the average of any quantity $\overline{\beta}$ by the number density $n_i$ weighted average \begin{equation} \overline{\beta} = \frac{\sum \beta_i Y_i}{\sum Y_i} \ , \label{eq:betabar} \end{equation} whose first partial derivative with respect to abundance $Y_i$ is \begin{equation} \frac{ \partial \overline{\beta}}{\partial Y_i} = \frac{\beta_i}{\sum Y_i} - \frac{\sum \beta_i Y_i}{\left ( \sum Y_i \right )^2} = \frac{\beta_i}{\sum Y_i} - \frac{\overline{\beta}}{\sum Y_i} = \frac{\beta_i - \overline{\beta}}{\sum Y_i} = \overline{\rm{A}} \ ( \beta_i - \overline{\beta} ) \ . \end{equation} The second partial derivative with respect to abundance $Y_i$ is then \begin{align} \ppartf{\overline{\beta}}{Y_i} & = \partop{Y_i} \left [ \frac{\beta_i}{\sum Y_i} - \frac{\sum \beta_i Y_i}{\left ( \sum Y_i \right )^2} \right ] \notag \\[8pt] & = -\frac{\beta_i}{(\sum Y_i)^2} - \frac{\beta_i}{(\sum Y_i)^2} + 2 \frac{\sum \beta_i Y_i}{\left ( \sum Y_i \right )^3} \notag \\[8pt] & = 2 \left ( \frac{\overline{\beta}}{(\sum Y_i)^2} - \frac{\beta_i}{(\sum Y_i)^2} \right ) \notag \\[8pt] & = 2 \overline{\rm{A}}^2 \ ( \overline{\beta} - \beta_i ) \notag \\[8pt] & = 2 \overline{\rm{A}} \ \frac{ \partial \overline{\beta}}{\partial Y_i} \ , \label{eq:azbar2nd} \end{align} which is a handy expression. Explicitly, \begin{align} \ppartf{\overline{{\rm A}}}{Y_i} & = 2 \overline{\rm{A}} \ \frac{ \partial \overline{{\rm A}}}{\partial Y_i} = - 2 \overline{\rm{A}}^3 \notag \\[8pt] \ppartf{\overline{{\rm Z}}}{Y_i} & = 2 \overline{\rm{A}} \ \frac{ \partial \overline{{\rm Z}}}{\partial Y_i} \end{align} It's worth considering the general case for second full derivative as its not common. The differential operator \begin{equation} d = dx \partop{x} + dy \partop{y} \end{equation} applied to $f$ gives \begin{equation} df = dx \partf{f}{x} + dy \partf{f}{y} \end{equation} The second differential operator \begin{equation} d^2 = \left ( dx \partop{x} + dy \partop{y}\right ) \left ( dx \partop{x} + dy \partop{y}\right ) \end{equation} applied to $f$ gives \begin{align} d^2f & = \left ( dx \partop{x} + dy \partop{y}\right ) \left ( dx \partop{x} + dy \partop{y}\right ) f \notag \\[8pt] & = \left ( d^2x \ppartop{x} + d^2y \ppartop{y} + dx \ dy \partop{x} \ \partop{y} + dy \ dx \partop{y} \ \partop{x} \right ) f \end{align} If the partial derivatives commute such that \begin{equation} \mpartf{f}{x}{y} = \mpartf{f}{y}{x} \ , \end{equation} then \begin{equation} d^2f = d^2x \ \ppartf{f}{x} + d^2y \ \ppartf{f}{y} + 2 \ dx \ dy \mpartf{f}{x}{y} \ , \end{equation} and for an arbitrary quantity $z$ \begin{equation} \ddrvf{f}{z} = \ddrvf{x}{z} \ \ppartf{f}{x} + \ddrvf{y}{z} \ \ppartf{f}{y} + 2 \ \drvf{x}{z} \ \drvf{y}{z} \mpartf{f}{x}{y} \ . \label{eq:2ndfull} \end{equation} For the case of composition variables, for an arbitray quantity $\alpha$, applying equation ($\ref{eq:2ndfull}$) yields \begin{equation} \ddrvf{\alpha}{Y_i} = \ddrvf{\overline{\rm{Z}}}{Y_i} \ \ppartf{\alpha}{\overline{\rm{Z}}} + \ddrvf{\overline{\rm{A}}}{Y_i} \ \ppartf{\alpha}{\overline{\rm{A}}} + 2 \ \drvf{\overline{\rm{Z}}}{Y_i} \ \drvf{\overline{\rm{A}}}{Y_i} \ \mpartf{\alpha}{\overline{\rm{Z}}}{\overline{\rm{A}}} \ . \end{equation} One assumes all partials of $\alpha$ with respect to $\overline{\rm{A}}$ and $\overline{\rm{Z}}$ are available from the physics is at hand (e.g., from an eos). The second partials of $\overline{\rm{A}}$ and $\overline{\rm{Z}}$ are given by equation ($\ref{eq:azbar2nd}$), and the first partials have been given previously. |
||
|
---|