Black Hole Mass Gap


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
  Neutron Stars and Black Holes:
     Black Hole Mass Gap
     Compact object IMF
     Neutrino HR diagram
     Pulsating white dwarfs
     Pop III with JWST
     Monte Carlo massive stars
     Neutrinos from pre-SN
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS YouTube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 MESA in Don't Look Up
2022 MESA Marketplace
2022 MESA Summer School
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Observing Intermediate-mass Black Holes and the Upper Stellar-mass gap with LIGO and Virgo (2022)

In this article we probe the mass function of intermediate-mass black holes (IMBHs) wherein we also include BHs in the upper mass gap ∼60 - 130 M$_{\odot}$. Employing the projected sensitivity of the upcoming LIGO and Virgo fourth observing (O4) run, we perform Bayesian analysis on quasi-circular non-precessing, spinning IMBH binaries (IMBHBs) with total masses 50 - 500 M$_\odot$, mass ratios 1.25, 4, and 10, and dimensionless spins up to 0.95, and estimate the precision with which the source-frame parameters can be measured. We find that, at 2$\sigma$, the mass of the heavier component of IMBHBs can be constrained with an uncertainty of ∼10 - 40% at a signal-to-noise ratio of 20. Focusing on the stellar-mass gap with new tabulations of the $^{12}$C($\alpha$,$\gamma$)$^{16}$O reaction rate and its uncertanties, we evolve massive helium core stars using MESA, to establish the lower and upper edge of the mass gap as ∼59$^{+34}_{-13}$ M$_{\odot}$ and ∼139$^{+30}_{-14}$ M$_{\odot}$ respectively, where the error bars give the mass range that follows from the ±3$\sigma$ uncertainty in the $^{12}$C($\alpha$,$\gamma$)$^{16}$O nuclear reaction rate. We find that high resolution of the tabulated reaction rate and fine temporal resolution are necessary to resolve the peak of the BH mass spectrum. We then study IMBHBs with components lying in the mass gap and show that the O4 run will be able to robustly identify most such systems. Finally, we re-analyse GW190521 with a state-of-the-art aligned-spin waveform model, finding that the primary mass lies in the mass gap with 90% credibility.

image image
image image
image image