![]() |
|
||||||||
Home Astronomy research Software Infrastructure: MESA FLASH-X STARLIB MESA-Web starkiller-astro My instruments White dwarf pulsations: Probe of 12C(α,γ)16O Impact of 22Ne Impact of ν cooling Variable white dwarfs MC reaction rates Micronovae Novae White dwarf supernova: Stable nickel production Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density Tracer particle burning Subsonic burning fronts Supersonic fronts W7 profiles Massive stars: Pop III with HST/JWST Rotating progenitors 3D evolution to collapse MC reaction rates Pre-SN variations Massive star supernova: Yields of radionuclides 26Al & 60Fe 44Ti, 60Co & 56Ni SN 1987A light curve Constraints on Ni/Fe An r-process Effects of 12C +12C Neutron Stars and Black Holes: Black Hole spectrum Mass Gap with LVK Compact object IMF He burn neutron stars Neutrino Emission: Identifying the Pre-SN Neutrino HR diagram Pre-SN Beta Processes Pre-SN neutrinos Stars: Hypatia catalog SAGB stars Nugrid Yields I He shell convection BBFH at 40 years γ-rays within 100 Mpc Iron Pseudocarbynes Pre-Solar Grains: C-rich presolar grains SiC Type U/C grains Grains from massive stars Placing the Sun SiC Presolar grains Chemical Evolution: Radionuclides in 2020s Zone models H to Zn Mixing ejecta Thermodynamics & Networks Skye EOS Helm EOS Five EOSs Equations of State 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software instruments Presentations Illustrations cococubed YouTube Bicycle adventures Public Outreach Education materials 2023 ASU Solar Systems Astronomy 2023 ASU Energy in Everyday Life AAS Journals AAS YouTube 2023 MESA VI 2023 MESA Marketplace 2023 MESA Classroom 2022 Earendel, A Highly Magnified Star 2022 White Dwarfs & 12C(α,γ)16O 2022 Black Hole Mass Spectrum 2022 MESA in Don't Look Up 2021 Bill Paxton, Tinsley Prize Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
On Stellar Evolution In A Neutrino Hertzsprung-Russell Diagram
(2020)
In this article we explore the evolution of a select grid of solar metallicity stellar models from their pre-main sequence phase to near their final fates in a neutrino Hertzsprung-Russell diagram, where the neutrino luminosity replaces the traditional photon luminosity. Using a calibrated MESA solar model for the solar neutrino luminosity (L$_{\nu,\odot}$=0.02398 $\cdot$ L$_{\gamma,\odot}$=9.1795$\times$10$^{31}$ erg s$^{-1}$) as a normalization, we identify $\simeq$ 0.3 MeV electron neutrino emission from helium burning during the helium flash (peak L$_{\nu}$/L$_{\nu,\odot}$$\simeq$10$^4$, flux $\Phi_{\nu, {\rm He \ flash}} \simeq$ 170 (10 pc/$d$)$^{2}$ cm$^{-2}$ s$^{-1}$ for a star located at a distance of $d$ parsec, timescale $\simeq$ 3 days) and the thermal pulse (peak L$_{\nu}$/L$_{\nu,\odot}$$\simeq$10$^9$, flux $\Phi_{\nu, {\rm TP}}\simeq$1.7$\times$10$^7$ (10 pc/$d$)$^{2}$ cm$^{-2}$ s$^{-1}$, timescale $\simeq$ 0.1 yr) phases of evolution in low mass stars as potential probes for stellar neutrino astronomy. We also delineate the contribution of neutrinos from nuclear reactions and thermal processes to the total neutrino loss along the stellar tracks in a neutrino Hertzsprung-Russell diagram. We find, broadly but with exceptions, that neutrinos from nuclear reactions dominate whenever hydrogen and helium burn, and that neutrinos from thermal processes dominate otherwise.
|
||||||||
|
---|