Pop III with JWST


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
     Neutrino HR diagram
     Pulsating white dwarfs
     Pop III with JWST
     Monte Carlo massive stars
     Neutrinos from pre-SN
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials

AAS Journals
AAS YouTube
2022 MESA Marketplace
2022 MESA Summer School
2022 MESA Classroom
2022 MESA in Don't Look Up
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
On The Observability Of Individual Population Iii Stars And Their Stellar-mass Black Hole Accretion Disks Through Cluster Caustic Transits (2018)

In this article we summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness that may come from Population III stars and possible accretion disks around their stellar-mass black holes in the epoch of First Light, broadly taken from z $\simeq$ 7 - 17.

Theoretical predictions and recent near-infrared power-spectra provide tighter constraints on their sky-signal. We outline the physical properties of zero metallicity Population III stars from MESA stellar evolution models through helium-depletion, and black hole accretion disks at z $\gtrsim$ 7. We assume that second-generation non-zero metallicity stars can form at higher multiplicity, so that black hole accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next generation ground-based telescopes may observe for both Population III stars and their black hole accretion disks.

Typical caustic magnifications can be $\mu$ $\simeq$ 10$^4$ - 10$^5$, with rise times of hours and decline times of $\lesssim$ 1 year for cluster transverse velocities of $v_T$ $\lesssim$ 1000 km/s. Microlensing by intracluster medium objects can modify transit magnifications, but lengthen visibility times. Depending on black hole masses, accretion-disk radii and feeding efficiencies, stellar-mass black hole accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require to monitor 3 - 30 lensing clusters to AB $\lesssim$ 29 mag over a decade.

panchromatic backgrounds

Pop III HR diagram

cluster caustics and magnification map
redshift space distribution