|
|||
Home Astronomy Research 2024 Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments AAS Journals 2024 AAS YouTube 2024 AAS Peer Review Workshops 2024 ASU Energy in Everyday Life 2024 MESA Classroom Outreach and Education Materials Solar Systems Astronomy Energy in Everyday Life Geometry of Art and Nature Calculus Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
$ \def\drvop#1{{\frac{d}{d{#1}}}} \def\drvf#1#2{{\frac{d{#1}}{d{#2}}}} \def\ddrvf#1#2{{\frac{d^2{#1}}{d{#2}^2}}} \def\partop#1{{\frac{\partial}{\partial {#1}}}} \def\ppartop#1{{\frac{\partial^2}{\partial {#1}^2}}} \def\partf#1#2{{\frac{\partial{#1}}{\partial{#2}}}} \def\ppartf#1#2{{\frac{\partial^2{#1}}{\partial{#2}^2}}} \def\mpartf#1#2#3{{\frac{\partial^2{#1}}{\partial{#2} \ {\partial{#3}}}}} $ A pdf of this note is avaliable. We've previously shown the mean atomic number \begin{equation} \overline{\rm{A}} = \frac{\sum n_i {\rm A}_i}{\sum n_i} = \frac{\sum Y_i {\rm A}_i}{\sum Y_i} = \frac{1}{\sum Y_i} \label{eq:abar} \end{equation} and mean charge \begin{equation} \overline{\rm{Z}} = \frac{\sum n_i {\rm Z}_i}{\sum n_i} = \frac{\sum Y_i {\rm Z}_i}{\sum Y_i} = \overline{\rm{A}} \sum Y_i {\rm Z}_i \label{eq:zbar} \end{equation} have derivatives \begin{equation} \drvf{\overline{{\rm A}}}{Y_i} = - \overline{{\rm A}}^2 \end{equation} and \begin{equation} \partf{\overline{\rm Z}}{Y_i} = \overline{\rm{A}} \ ( Z_i - {\overline{\rm Z}} ) \end{equation} respectively. For an arbitrary quantity $\beta$ that is written in terms of $\overline{\rm{A}}$ and $\overline{\rm{Z}}$, the derivative with respect to $Y_i$ is \begin{equation} \drvf{\beta}{Y_i} \ = \ \partf{\beta}{\overline{\rm Z}} \ \partf{\overline{\rm Z}}{Y_i} + \partf{\beta}{\overline{\rm A}} \ \partf{\overline{\rm A}}{Y_i} \ = \ \partf{\beta}{\overline{\rm Z}} \ \overline{\rm{A}} \ (Z_i - {\overline{\rm Z}}) - \partf{\beta}{\overline{\rm A}} \ \overline{\rm{A}}^2 \ . \label{eq:dbdy} \end{equation} One assumes all partials of $\beta$ with respect to $\overline{\rm{A}}$ and $\overline{\rm{Z}}$ are available from the physics is at hand (e.g., from an eos). One simple but relevant example is the specific energy of an ideal gas \begin{equation} e = \frac{3}{2} \frac{P}{\rho} = \frac{3}{2} \frac{N_A kT}{\overline{{\rm A}}} \hskip 0.2 in {\rm erg \ g}^{-1} \label{eq:egas} \end{equation} has the partial derivative of with respect to ${\overline{\rm Z}}$ \begin{equation} \partf{e}{\overline{\rm Z}} = 0 \end{equation} and the partial derivative of with respect to ${\overline{\rm A}}$ \begin{equation} \partf{e}{\overline{\rm A}} = - \frac{3}{2} \frac{N_A kT}{\overline{{\rm A}}^2} \ . \end{equation} Hence by equation ($\ref{eq:dbdy}$) the derivative with respect to $Y_i$ is \begin{equation} \drvf{e}{Y_i} = \partf{e}{\overline{\rm Z}} \ \partf{\overline{\rm Z}}{Y_i} + \partf{e}{\overline{\rm A}} \ \partf{\overline{\rm A}}{Y_i} = \left [ - \frac{3}{2} \frac{N_A kT}{\overline{{\rm A}}^2} \right ] \left [ - \overline{\rm A}^2 \right] = \frac{3}{2} N_A kT \hskip 0.2 in {\rm erg \ g}^{-1} \end{equation} as expected when recasting equation ($\ref{eq:egas}$) as \begin{equation} e = \frac{3}{2} \frac{P}{\rho_B} = \frac{3}{2} \ N_A kT \ \sum Y_i \hskip 0.2 in {\rm erg \ g}^{-1} \ . \end{equation} Note $\partial e / \partial Y_i$ is usually known as the chemical potential in the first law of thermodynamics when composition changes are taken into account. Another example is the mean molecular weight \begin{equation} \mu = \left [ \frac{1}{\mu_{ion}} + \frac{1}{\mu_{ele}} \right ]^{-1} = \left [ \frac{1}{\overline{\rm A}} + Y_e \right ]^{-1} = \left [ \frac{1}{\overline{\rm A}} + \frac{\overline{\rm Z}}{\overline{\rm A}} \right ]^{-1} = \frac{\overline{\rm A}}{\overline{\rm Z} + 1} = \frac{ n_B}{\sum n_i + n_e} \ . \end{equation} The partial derivative of $\mu$ with respect to ${\overline{\rm Z}}$ is \begin{equation} \partf{\mu}{\overline{\rm Z}} = \partf{}{\overline{\rm Z}} \left ( \frac{\overline{\rm{A}}}{\overline{\rm{Z}} + 1 } \right ) = - \frac{\overline{\rm A}}{\left ( \overline{\rm Z} + 1 \right )^2} = - \frac{\mu}{\overline{\rm Z} + 1} = - \frac{\mu^2}{\overline{\rm A} } \ . \end{equation} The partial derivative of $\mu$ with respect to ${\overline{\rm A}}$ is \begin{equation} \partf{\mu}{\overline{\rm A}} = \partf{}{\overline{\rm A}} \left ( \frac{ \overline{\rm{A}}}{\overline{\rm{Z}} + 1 } \right ) = \frac{1}{\left ( \overline{\rm Z} + 1 \right )} = \frac{\mu}{\overline{\rm A}} \end{equation} Applying equation ($\ref{eq:dbdy}$), the derivative of $\mu$ with respect to $Y_i$ is \begin{align} \drvf{\mu}{Y_i} & = \partf{\mu}{\overline{\rm Z}} \ \partf{\overline{\rm Z}}{Y_i} + \partf{\mu}{\overline{\rm A}} \ \partf{\overline{\rm A}}{Y_i} = \left [ -\frac{\mu^2}{\overline{\rm A} } \right ] \left [ \overline{\rm{A}} (Z_i - {\overline{\rm Z}}) \right] + \left [ \frac{\mu}{\overline{\rm A} } \right ] \left [ - \overline{\rm A}^2 \right] \notag \\[8pt] & = \mu^2 ({\overline{\rm Z}} - Z_i) - \mu {\overline{\rm A}} \end{align} Sometimes the composition is defined in terms of the hydrogen baryon (mass) fraction $\mathcal{X}$, helium baryon (mass) $\mathcal{Y}$, and metal baryon (mass) $\mathcal{Z}$. Bayron number conservation is then expressed as \begin{equation} \mathcal{X}+ \mathcal{Y} + \mathcal{Z} = 1 \ . \label{eq:xyz} \end{equation} These abundance variables are related to the usual $Y_i = X_i \ A_i$ abundance variables by \begin{equation} \mathcal{X} = Y_{\rm H} \hskip 0.5in \mathcal{Y} = 4Y_{\rm He} \hskip 0.5in \mathcal{Z} = A_{\rm z} Y_{\rm Z} \ , \end{equation} which mostly explains the use of calligraphic font to avoid the same symbols for different quantities. Applying equation ($\ref{eq:abar}$) \begin{equation} \overline{\rm{A}} = \frac{1}{\mathcal{X} + \mathcal{Y}/4 + \mathcal{Z}/A_{\rm z}} = \frac{4 A_{\rm z}}{A_{\rm z} \mathcal{X} + A_{\rm z} \mathcal{Y} + 4 \mathcal{Z} } = \frac{4 A_{\rm z}}{A_{\rm z} + 3 A_{\rm z} \mathcal{X} + 4 \mathcal{Z} - A_{\rm z} \mathcal{Z}} \ , \label{eq:fabar} \end{equation} where the last expression eliminated $\mathcal{Y}$ using equation ($\ref{eq:xyz}$). Applying equation ($\ref{eq:zbar}$) \begin{align} \overline{\rm{Z}} & = \frac{\mathcal{X} + 1/2 \mathcal{Y} + Z_{\rm z}/A_{\rm z} \mathcal{Z}}{\mathcal{X} + \mathcal{Y}/4 + \mathcal{Z}/A_{\rm z}} \notag \\[8pt] & = (\mathcal{X} + 1/2 \mathcal{Y} + Z_{\rm z}/A_{\rm z} \mathcal{Z}) \cdot \overline{\rm{A}} \notag \\[8pt] & = \frac{2 A_{\rm z}(1 + \mathcal{X} - \mathcal{Z}) + 4 Z_{\rm z} \mathcal{Z}}{A_{\rm z} + 3 A_{\rm z} \mathcal{X} + 4 \mathcal{Z} - A_{\rm z} \mathcal{Z}} \ , \label{eq:fzbar} \end{align} where again $\mathcal{Y}$ was eliminated using equation ($\ref{eq:xyz}$). Then the first derivatives of $\overline{\rm{A}}$ are \begin{align} \partf{\overline{\rm{A}}}{\mathcal{X}} & = - \frac{12 A_{\rm z}^2}{(A_{\rm z} + 3 A_{\rm z} \mathcal{X} + 4 \mathcal{Z} - A_{\rm z} \mathcal{Z})^2} \notag \\[8pt] \partf{\overline{\rm{A}}}{\mathcal{Z}} & = \frac{4 A_{\rm z}^2 - 16 A_{\rm z}}{(A_{\rm z} + 3 A_{\rm z} \mathcal{X} + 4 \mathcal{Z} - A_{\rm z} \mathcal{Z})^2} \label{eq:fdabar} \end{align} The first derivatives of $\overline{\rm{Z}}$ are \begin{align} \partf{\overline{\rm{Z}}}{\mathcal{X}} & = \frac{4 A_{\rm z} [ A_{\rm z}(\mathcal{Z} - 1) + \mathcal{Z}(2 - 3 Z_{\rm z}) ] }{(A_{\rm z} + 3 A_{\rm z} \mathcal{X} + 4 \mathcal{Z} - A_{\rm z} \mathcal{Z})^2} \notag \\[8pt] \partf{\overline{\rm{Z}}}{\mathcal{Z}} & = - \frac{4 A_{\rm z} [ 2 + \mathcal{X}(2 (A_{\rm z} - 3 Z_{\rm z}) - Z_{\rm z}] }{(A_{\rm z} + 3 A_{\rm z} \mathcal{X} + 4 \mathcal{Z} - A_{\rm z} \mathcal{Z})^2} \label{eq:fdzbar} \end{align} For an arbitrary quantity $\beta$ that is written in terms of $\overline{\rm{A}}$ and $\overline{\rm{Z}}$, the derivatives with respect to $\mathcal{X}$ and $\mathcal{Z}$ are \begin{align} \drvf{\beta}{\mathcal{X}} & = \partf{\beta}{\overline{\rm Z}} \ \partf{\overline{\rm Z}}{\mathcal{X}} + \partf{\beta}{\overline{\rm A}} \ \partf{\overline{\rm A}}{\mathcal{X}} \notag \\[8pt] \drvf{\beta}{\mathcal{Z}} & = \partf{\beta}{\overline{\rm Z}} \ \partf{\overline{\rm Z}}{\mathcal{Z}} + \partf{\beta}{\overline{\rm A}} \ \partf{\overline{\rm A}}{\mathcal{Z}} \label{eq:chain} \end{align} Note that equations ($\ref{eq:fabar}$) and ($\ref{eq:fzbar}$) can be solved for the either unknown or inconvenient variables $A_{\rm z}$ and $Z_{\rm z}$: \begin{align} A_{\rm z} & = \frac{4 \overline{\rm A}\mathcal{Z}}{4 - \overline{\rm A} - 3 \overline{\rm A} \mathcal{X} - \overline{\rm A} \mathcal{Z}} \notag \\[8pt] Z_{\rm z} & = \frac{4 \overline{\rm Z} - 2\overline{\rm A}(1 + \mathcal{X} - \mathcal{Z})}{4 - \overline{\rm A} - 3 \overline{\rm A} \mathcal{X} - \overline{\rm A} \mathcal{Z}} \ . \end{align} Eliminating $A_{\rm z}$ and $Z_{\rm z}$ from equation (\ref{eq:fdabar}) gives \begin{align} \partf{\overline{\rm A}}{X} & = - \frac{3 \overline{\rm A}^2}{4} \notag \\[8pt] \partf{\overline{\rm A}}{Z} & = \frac{\overline{\rm A} \ (\overline{\rm A} + 3 \overline{\rm A} \mathcal{X} -4)}{4 \mathcal{Z}} \ . \end{align} Eliminating $A_{\rm z}$ and $Z_{\rm z}$ from equation (\ref{eq:fdzbar}) gives \begin{align} \partf{\overline{\rm Z}}{X} & = \frac{\overline{\rm A}\ (2 - 3 \overline{\rm Z})}{4} \notag \\[8pt] \partf{\overline{\rm Z}}{Z} & = \frac{\overline{\rm A} \ [\overline{\rm Z} + (3 \overline{\rm Z} - 2) \mathcal{X} - 2]}{4 \mathcal{Z}} \ . \end{align} Equation ($\ref{eq:chain}$) still holds. |
||
|
---|