|
|||
Home Astronomy Research Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Adiabatic white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines Fermi-Dirac functions Polyhedra volume Plane - cube intersection Coating an ellipsoid Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Hydrodynamic test cases Galactic chemical evolution Universal two-body problem Circular and elliptical 3 body The pendulum Phyllotaxis MESA MESA-Web FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc AAS Journals 2024 AAS YouTube 2024 AAS Peer Review Workshops 2024 ASU Energy in Everyday Life 2024 MESA Classroom Outreach and Education Materials Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
"Zone models" of galactic chemical evolution usually assert the abundance $N$ of an isotope $i$ follows \begin{equation} \frac{dN_i}{dt} = \rm{death} \ - \ \rm {birth} \ + \ \rm {infall} \ + \ \rm {decay} \ . \label{eq1} \tag{1} \end{equation} The death term (representing supernovae, kilonovae, classical novae, etc) is a sum of retarded time birth terms (stars born yesterday die today) , giving rise to a system of integro-differential equations \begin{equation} \begin{split} \frac{dN_i}{dt} & = \int_{M_{lo}}^{M_{hi}} B(t - \tau(m)) \ \Psi(m) \ N_i (t-\tau(m)) \ dm \\ & - \ B(t) \ \frac{N_i}{N_{\rm{gas}}} + \ {\dot N}_{i,\rm{gas}} + \frac{N_i}{\tau_{1/2,i}} \qquad {\rm M}_{\odot} \ {\rm pc}^{-3} \ {\rm Gyr}^{-1} \ , \end{split} \label{eq2} \tag{2} \end{equation} where $B(t)$ is the birth rate, $\tau(m)$ is the stellar lifetime, $\Psi(m)$ is the initial mass function, $N_{\rm{gas}}$ is the total surface gas density, ${\dot N}_{i,\rm{gas}}$ is the mass accretion rate, and $\tau_{1/2,i}$ is the half-life of the isotope. The tool chem3.tbz solves this system of integro-differentials. The tool includes a plain text nucleosynthesis data file, which one can easily modify, that contains isotopic contributions from Type II supernovae (Woosley & Weaver 1995), low mass stars (Renzini & Voli 1986), six different Type Ia supernovae models, three different classical novae models, and Big Bang nucleosynthesis. Hydrogen Through Zinc The chemical evolution of 76 stable isotopes, from hydrogen to zinc, is presented in this article. A grid of 60 Type II supernova models of varying mass (11 ≤ M/M⊙ ≤ 40) and metallicity (0, 10-4, 0.01, 0.1, and 1 Z⊙), is coupled with a simple dynamical model for the Milky Way. The results are compared in detail with the inferred atmospheric abundances for stars with metallicities in the range -3.0 ≤ [Fe/H] ≤ 0.0 dex. Sampled 4.6 billion years ago at a distance of 8.5 kpc, we find a composition at the solar circle that is within a factor of two of the solar abundances: |
||
|
Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate. |
---|