*
Cococubed.com


Galactic Chemical Evolution

Home

Astronomy Research
   Radiative Opacity
   2024 Neutrino Emission from Stars
   2023 White Dwarfs & 12C(α,γ)16O
   2023 MESA VI
   2022 Earendel, A Highly Magnified Star
   2022 Black Hole Mass Spectrum
   2021 Skye Equation of State
   2021 White Dwarf Pulsations & 22Ne
   Software Instruments
     Stellar equation of states
     EOS with ionization
     EOS for supernovae
     Chemical potentials
     Stellar atmospheres

     Voigt Function
     Jeans escape
     Polytropic stars
     Cold white dwarfs
     Adiabatic white dwarfs

     Cold neutron stars
     Stellar opacities
     Neutrino energy loss rates
     Ephemeris routines
     Fermi-Dirac functions

     Polyhedra volume
     Plane - cube intersection
     Coating an ellipsoid

     Nuclear reaction networks
     Nuclear statistical equilibrium
     Laminar deflagrations
     CJ detonations
     ZND detonations

     Fitting to conic sections
     Unusual linear algebra
     Derivatives on uneven grids
     Pentadiagonal solver
     Quadratics, Cubics, Quartics

     Supernova light curves
     Exact Riemann solutions
     1D PPM hydrodynamics
     Hydrodynamic test cases
     Galactic chemical evolution

     Universal two-body problem
     Circular and elliptical 3 body
     The pendulum
     Phyllotaxis

     MESA
     MESA-Web
     FLASH

     Zingale's software
     Brown's dStar
     GR1D code
     Iliadis' STARLIB database
     Herwig's NuGRID
     Meyer's NetNuc

AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

"Zone models" of galactic chemical evolution usually assert the abundance $N$ of an isotope $i$ follows \begin{equation} \frac{dN_i}{dt} = \rm{death} \ - \ \rm {birth} \ + \ \rm {infall} \ + \ \rm {decay} \ . \label{eq1} \tag{1} \end{equation} The death term (representing supernovae, kilonovae, classical novae, etc) is a sum of retarded time birth terms (stars born yesterday die today) , giving rise to a system of integro-differential equations \begin{equation} \begin{split} \frac{dN_i}{dt} & = \int_{M_{lo}}^{M_{hi}} B(t - \tau(m)) \ \Psi(m) \ N_i (t-\tau(m)) \ dm \\ & - \ B(t) \ \frac{N_i}{N_{\rm{gas}}} + \ {\dot N}_{i,\rm{gas}} + \frac{N_i}{\tau_{1/2,i}} \qquad {\rm M}_{\odot} \ {\rm pc}^{-3} \ {\rm Gyr}^{-1} \ , \end{split} \label{eq2} \tag{2} \end{equation} where $B(t)$ is the birth rate, $\tau(m)$ is the stellar lifetime, $\Psi(m)$ is the initial mass function, $N_{\rm{gas}}$ is the total surface gas density, ${\dot N}_{i,\rm{gas}}$ is the mass accretion rate, and $\tau_{1/2,i}$ is the half-life of the isotope.

The tool chem3.tbz solves this system of integro-differentials. The tool includes a plain text nucleosynthesis data file, which one can easily modify, that contains isotopic contributions from Type II supernovae (Woosley & Weaver 1995), low mass stars (Renzini & Voli 1986), six different Type Ia supernovae models, three different classical novae models, and Big Bang nucleosynthesis.

Hydrogen Through Zinc

The chemical evolution of 76 stable isotopes, from hydrogen to zinc, is presented in this article. A grid of 60 Type II supernova models of varying mass (11 ≤ M/M ≤ 40) and metallicity (0, 10-4, 0.01, 0.1, and 1 Z), is coupled with a simple dynamical model for the Milky Way. The results are compared in detail with the inferred atmospheric abundances for stars with metallicities in the range -3.0 ≤ [Fe/H] ≤ 0.0 dex. Sampled 4.6 billion years ago at a distance of 8.5 kpc, we find a composition at the solar circle that is within a factor of two of the solar abundances:

image
 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.