*
Cococubed.com


Galactic Chemical Evolution

Home

Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum
   Phyllotaxis

   MESA
   MESA-Web
   FLASH

   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
Presentations
Illustrations
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2023 ASU Solar Systems Astronomy
2023 ASU Energy in Everyday Life

AAS Journals
2023 AAS YouTube
2023 AAS Peer Review Workshops
2023 MESA VI
2023 MESA Marketplace
2023 MESA Classroom
2023 Neutrino Emission from Stars
2023 White Dwarfs & 12C(α,γ)16O
2022 Earendel, A Highly Magnified Star
2022 Black Hole Mass Spectrum
2022 MESA in Don't Look Up
2021 Bill Paxton, Tinsley Prize


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

"Zone models" of galactic chemical evolution usually assert the abundance $N$ of an isotope $i$ follows \begin{equation} \frac{dN_i}{dt} = \rm{death} \ - \ \rm {birth} \ + \ \rm {infall} \ + \ \rm {decay} \ . \label{eq1} \tag{1} \end{equation} The death term (representing supernovae, kilonovae, classical novae, etc) is a sum of retarded time birth terms (stars born yesterday die today) , giving rise to a system of integro-differential equations \begin{equation} \begin{split} \frac{dN_i}{dt} & = \int_{M_{lo}}^{M_{hi}} B(t - \tau(m)) \ \Psi(m) \ N_i (t-\tau(m)) \ dm \\ & - \ B(t) \ \frac{N_i}{N_{\rm{gas}}} + \ {\dot N}_{i,\rm{gas}} + \frac{N_i}{\tau_{1/2,i}} \qquad {\rm M}_{\odot} \ {\rm pc}^{-3} \ {\rm Gyr}^{-1} \ , \end{split} \label{eq2} \tag{2} \end{equation} where $B(t)$ is the birth rate, $\tau(m)$ is the stellar lifetime, $\Psi(m)$ is the initial mass function, $N_{\rm{gas}}$ is the total surface gas density, ${\dot N}_{i,\rm{gas}}$ is the mass accretion rate, and $\tau_{1/2,i}$ is the half-life of the isotope.

The tool chem3.tbz solves this system of integro-differentials. The tool includes a plain text nucleosynthesis data file, which one can easily modify, that contains isotopic contributions from Type II supernovae (Woosley & Weaver 1995), low mass stars (Renzini & Voli 1986), six different Type Ia supernovae models, three different classical novae models, and Big Bang nucleosynthesis.

Hydrogen Through Zinc

The chemical evolution of 76 stable isotopes, from hydrogen to zinc, is presented in this article. A grid of 60 Type II supernova models of varying mass (11 ≤ M/M ≤ 40) and metallicity (0, 10-4, 0.01, 0.1, and 1 Z), is coupled with a simple dynamical model for the Milky Way. The results are compared in detail with the inferred atmospheric abundances for stars with metallicities in the range -3.0 ≤ [Fe/H] ≤ 0.0 dex. Sampled 4.6 billion years ago at a distance of 8.5 kpc, we find a composition at the solar circle that is within a factor of two of the solar abundances:

image
 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.