![]() |
|
||||||
Home Astronomy research Software Infrastructure: MESA FLASH-X STARLIB MESA-Web starkiller-astro My instruments White dwarf pulsations: 12C(α,γ) & overshooting Probe of 12C(α,γ)16O Impact of 22Ne Impact of ν cooling Variable white dwarfs MC reaction rates Micronovae Novae White dwarf supernova: Stable nickel production Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density Tracer particle burning Subsonic burning fronts Supersonic fronts W7 profiles Massive stars: Pop III with HST/JWST Rotating progenitors 3D evolution to collapse MC reaction rates Pre-SN variations Massive star supernova: Yields of radionuclides 26Al & 60Fe 44Ti, 60Co & 56Ni SN 1987A light curve Constraints on Ni/Fe An r-process Effects of 12C +12C Neutron Stars and Black Holes: Black Hole spectrum Mass Gap with LVK Compact object IMF He burn neutron stars Neutrino Emission: Neutrino emission from stars Identifying the Pre-SN Neutrino HR diagram Pre-SN Beta Processes Pre-SN neutrinos Stars: Hypatia catalog SAGB stars Nugrid Yields I He shell convection BBFH at 40 years γ-rays within 100 Mpc Iron Pseudocarbynes Pre-Solar Grains: C-rich presolar grains SiC Type U/C grains Grains from massive stars Placing the Sun SiC Presolar grains Chemical Evolution: Radionuclides in 2020s Zone models H to Zn Mixing ejecta Thermodynamics & Networks Skye EOS Helm EOS Five EOSs Equations of State 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software instruments Presentations Illustrations cococubed YouTube Bicycle adventures Public Outreach Education materials 2023 ASU Solar Systems Astronomy 2023 ASU Energy in Everyday Life AAS Journals 2023 AAS YouTube 2023 AAS Peer Review Workshops 2023 MESA VI 2023 MESA Marketplace 2023 MESA Classroom 2023 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2022 MESA in Don't Look Up 2021 Bill Paxton, Tinsley Prize Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Burning Model Calibration, Reconstruction Of Thickened Flames, And Verification For Planar Detonations (2016) In this article we refine our previously introduced parameterized model for explosive carbon-oxygen fusion during thermonuclear supernovae (SN~Ia) by adding corrections to post-processing of recorded Lagrangian fluid element histories to obtain more accurate isotopic yields. A new method is introduced for reconstructing the temperature-density history within the artificially thick model deflagration front. We obtain better than 5% consistency between the electron capture computed by the burning model and yields from post-processing. For detonations, we compare to a benchmark calculation of the structure of driven steady-state planar detonations performed with a large nuclear reaction network and error-controlled integration. For steady-state planar detonations down to a density of 5 $\times$ 10$^6$ g cm$^{-3}$ our post processing matches the major abundances in the benchmark solution typically to better than 10% for times greater than 0.01 s after the shock front passage. Presented here with post-processing for the first time, we perform a 2D SN~Ia in the Chandrasekhar-mass deflagration-detonation transition (DDT) scenario. We find that reconstruction of deflagration tracks leads to slightly more complete silicon burning than without reconstruction. The resulting abundance structure of the ejecta is consistent with inferences from spectroscopic studies of observed SNe Ia. We confirm the absence of a central region of stable Fe-group material for the multi-dimensional DDT scenario. Detailed isotopic yields are tabulated and only change modestly when using deflagration reconstruction.
|
||||||
|
---|