A Tracer Method For Type Ia Supernova Yields


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
  Neutron Stars and Black Holes:
     Black Hole mass spectrum
     Compact object IMF
     He burn on neutron stars
     Variable white dwarfs
     Pop III with JWST
     Neutrino HR diagram
     Monte Carlo massive stars
     Pre-supernova neutrinos
     Pre-supernova variations
     Monte Carlo white dwarfs
     SAGB stars
     Nugrid Yields I
     Classical novae
     He shell convection
     Presolar grains
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS YouTube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 MESA VI
2022 MESA in Don't Look Up
2022 MESA Marketplace
2012-2023 MESA Schools
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Burning Model Calibration, Reconstruction Of Thickened Flames, And Verification For Planar Detonations (2016)

In this article we refine our previously introduced parameterized model for explosive carbon-oxygen fusion during thermonuclear supernovae (SN~Ia) by adding corrections to post-processing of recorded Lagrangian fluid element histories to obtain more accurate isotopic yields.

A new method is introduced for reconstructing the temperature-density history within the artificially thick model deflagration front. We obtain better than 5% consistency between the electron capture computed by the burning model and yields from post-processing. For detonations, we compare to a benchmark calculation of the structure of driven steady-state planar detonations performed with a large nuclear reaction network and error-controlled integration. For steady-state planar detonations down to a density of 5 $\times$ 10$^6$ g cm$^{-3}$ our post processing matches the major abundances in the benchmark solution typically to better than 10% for times greater than 0.01 s after the shock front passage.

Presented here with post-processing for the first time, we perform a 2D SN~Ia in the Chandrasekhar-mass deflagration-detonation transition (DDT) scenario. We find that reconstruction of deflagration tracks leads to slightly more complete silicon burning than without reconstruction. The resulting abundance structure of the ejecta is consistent with inferences from spectroscopic studies of observed SNe Ia. We confirm the absence of a central region of stable Fe-group material for the multi-dimensional DDT scenario. Detailed isotopic yields are tabulated and only change modestly when using deflagration reconstruction.

image image