Detonation Density Effects on
White Dwarf Supernovae


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
  Neutron Stars and Black Holes:
     Black Hole mass spectrum
     Compact object IMF
     He burn on neutron stars
     Variable white dwarfs
     Pop III with JWST
     Neutrino HR diagram
     Monte Carlo massive stars
     Pre-supernova neutrinos
     Pre-supernova variations
     Monte Carlo white dwarfs
     SAGB stars
     Nugrid Yields I
     Classical novae
     He shell convection
     Presolar grains
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS YouTube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 MESA VI
2022 MESA in Don't Look Up
2022 MESA Marketplace
2012-2023 MESA Schools
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Evaluating Systematic Dependencies Of Type Ia Supernovae: The Influence Of Deflagration To Detonation Density (2010)
In this article we explore the effects of the deflagration to detonation transition (DDT) density on the production of $^{56}$Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae).

Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of $^{56}$Ni masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of $^{56}$Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1 - 3) $\times$ 10$^7$ g cm$^{-3}$.

We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 $\pm$ 0.004 M$_{\odot}$ for a 1 Z$_{\odot}$ increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 $\pm$ 0.004 M$_{\odot}$ decrease in the $^{56}$Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.


image image

early deflagration phases