Yields of Radionuclides


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
  Neutron Stars and Black Holes:
     Black Hole mass spectrum
     Compact object IMF
     He burn on neutron stars
     Variable white dwarfs
     Pop III with JWST
     Neutrino HR diagram
     Monte Carlo massive stars
     Pre-supernova neutrinos
     Pre-supernova variations
     Monte Carlo white dwarfs
     SAGB stars
     Nugrid Yields I
     Classical novae
     He shell convection
     Presolar grains
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS YouTube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 MESA VI
2022 MESA in Don't Look Up
2022 MESA Marketplace
2012-2023 MESA Schools
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Freeze-out yields of radioactivities in core-collapse supernovae (2011)

In this article, we explore the nucleosynthesis trends from freeze-out expansions in core-collapse supernovae. Our results suggest that isotopes in the mass range 12 ≤ A ≤ 122 that are produced during the freeze-out expansions may be classified in two families. The isotopes of the first family manifest a common mass fraction evolutionary profile, whose specific shape per isotope depends on the characteristic transition between two equilibrium states (equilibrium state transition) during each type of freeze-out expansion. The first family includes the majority of isotopes in this mass range. The second family is limited to magic nuclei and isotopes in their locality, which do not sustain any transition, become nuclear flow hubs, and dominate the final composition.

We use exponential and power-law adiabatic profiles to identify dynamic large-scale and small-scale equilibrium patterns among nuclear reactions. A reaction rate sensitivity study identifies those reactions that are crucial to the synthesis of radioactivities in the mass range of interest. In addition, we introduce non-monotonic parameterized profiles to probe the impact of the reverse shock and multi-dimensional explosion asymmetries on nucleosynthesis. Cases are shown in which the non-monotonic profiles favor the production of radioactivities. Non-monotonic freeze-out profiles involve longer non-equilibrium nucleosynthesis intervals compared with the exponential and power-law profiles, resulting in mass fraction trends and yield distributions that may not be achieved by the monotonic freeze-out profiles.

image image

Second family near magic number 28