Verification Problem


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
  Neutron Stars and Black Holes:
     Black Hole mass spectrum
     Compact object IMF
     He burn on neutron stars
     Variable white dwarfs
     Pop III with JWST
     Neutrino HR diagram
     Monte Carlo massive stars
     Pre-supernova neutrinos
     Pre-supernova variations
     Monte Carlo white dwarfs
     SAGB stars
     Nugrid Yields I
     Classical novae
     He shell convection
     Presolar grains
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS YouTube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 MESA VI
2022 MESA in Don't Look Up
2022 MESA Marketplace
2022 MESA Summer School
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
The simplest test of detonation is the one-dimensional, gamma-law equation of state, rarefaction wave. Here a slab of material is ignited on one side and a detonation propagates to the other side. For a Chapman-Jouget detonation speed of 0.8 cm/s, it takes 6.25 $\mu$s for the detonation to travel 5 cm. The rich structure of a multi-dimensional detonation is absent, and a simple rarefaction wave follows the detonation front (e.g., Fickett & Davis 1979). Expansion of material in the rarefaction depends on the boundary condition where the detonation is initiated, which is usually modeled as a freely moving surface or a moving piston. For the Mader problem, a stationary piston is used. In this case, the head of the rarefaction remains at the detonation front since the flow is sub sonic, and the tail of the rarefaction is halfway between the front and the piston. This article, this article, and this article, discuss analytic and numerical solutions for the Mader problem.

The tool in mader.tbz provide solutions as a function of time and position for the Mader verification test case.

simple detonation
here are less-simple ones
image image