|
|||||||||||||
Home Astronomy research Software Infrastructure: MESA FLASH-X STARLIB MESA-Web starkiller-astro My instruments White dwarf pulsations: 12C(α,γ) & overshooting Probe of 12C(α,γ)16O Impact of 22Ne Impact of ν cooling Variable white dwarfs MC reaction rates Micronovae Novae White dwarf supernova: Stable nickel production Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density Tracer particle burning Subsonic burning fronts Supersonic fronts W7 profiles Massive stars: Pop III with HST/JWST Rotating progenitors 3D evolution to collapse MC reaction rates Pre-SN variations Massive star supernova: Yields of radionuclides 26Al & 60Fe 44Ti, 60Co & 56Ni SN 1987A light curve Constraints on Ni/Fe An r-process Effects of 12C +12C Neutron Stars and Black Holes: Black Hole spectrum Mass Gap with LVK Compact object IMF He burn neutron stars Neutrino Emission: Neutrino emission from stars Identifying the Pre-SN Neutrino HR diagram Pre-SN Beta Processes Pre-SN neutrinos Stars: Hypatia catalog SAGB stars Nugrid Yields I He shell convection BBFH at 40 years γ-rays within 100 Mpc Iron Pseudocarbynes Pre-Solar Grains: C-rich presolar grains SiC Type U/C grains Grains from massive stars Placing the Sun SiC Presolar grains Chemical Evolution: Radionuclides in 2020s Zone models H to Zn Mixing ejecta Thermodynamics, Opacities & Networks Radiative Opacity Skye EOS Helm EOS Five EOSs Equations of State 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software Instruments AAS Journals 2024 AAS YouTube 2024 AAS Peer Review Workshops 2024 ASU Energy in Everyday Life 2024 MESA Classroom Outreach and Education Materials Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
On Variations Of Pre-Supernova Model Properties (2017)
In this paper by Farmer et al we explore the variation in single star 15-30 M☉, non-rotating, solar metallicity, pre-supernova MESA models due to changes in the number of isotopes in a fully-coupled nuclear reaction network and adjustments in the mass resolution. Within this two-dimensional plane we quantitatively detail the range of core masses at various stages of evolution, mass locations of the main nuclear burning shells, electron fraction profiles, mass fraction profiles, burning lifetimes, stellar lifetimes, and compactness parameter at core-collapse for models with and without mass loss. Up to carbon burning we generally find mass resolution has a larger impact on the variations than the number of isotopes, while the number of isotopes plays a more significant role in determining the span of the variations for neon, oxygen and silicon burning. Choice of mass resolution dominates the variations in the structure of the intermediate convection zone and secondary convection zone during core and shell hydrogen burning respectively, where we find a minimum mass resolution of ≈0.01 M☉ is necessary to achieve convergence in the helium core mass at the ≈5% level. On the other hand, at the onset of core-collapse we find ≈30% variations in the central electron fraction and mass locations of the main nuclear burning shells, a minimum of≈127 isotopes is needed to attain convergence of these values at the ≈10% level.
|
||||||||||||
|
---|