![]() |
|
||||||||||||
Home Astronomy research Software Infrastructure: MESA FLASH STARLIB MESA-Web starkiller-astro My instruments White dwarf supernova: Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density effects Tracer particle burning Subsonic burning fronts Supersonic burning fronts W7 profiles Massive star supernova: Rotating progenitors 3D evolution 26Al & 60Fe 44Ti, 60Co & 56Ni Yields of radionuclides Effects of 12C +12C SN 1987A light curve Constraints on Ni/Fe ratios An r-process Neutron Stars and Black Holes: Black Hole Mass Gap Compact object IMF Stars: Neutrino HR diagram Pulsating white dwarfs Pop III with JWST Monte Carlo massive stars Neutrinos from pre-SN Pre-SN variations Monte Carlo white dwarfs SAGB stars Classical novae He shell convection Presolar grains He burn on neutron stars BBFH at 40 years Chemical Evolution: Iron Pseudocarbynes Radionuclides in the 2020s Hypatia catalog Zone models H to Zn Mixing ejecta γ-rays within 100 Mpc Thermodynamics & Networks Stellar EOS 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software instruments Presentations Illustrations cococubed YouTube Bicycle adventures Public Outreach Education materials 2022 ASU Solar Systems Astronomy 2022 ASU Energy in Everyday Life AAS Journals AAS YouTube 2022 Earendel, A Highly Magnified Star 2022 TV Columbae, Micronova 2022 White Dwarfs and 12C(α,γ)16O 2022 MESA in Don't Look Up 2022 MESA Marketplace 2022 MESA Summer School 2022 MESA Classroom 2021 Bill Paxton, Tinsley Prize Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
On Variations Of Pre-Supernova Model Properties (2017)
In this paper by Farmer et al we explore the variation in single star 15-30 M☉, non-rotating, solar metallicity, pre-supernova MESA models due to changes in the number of isotopes in a fully-coupled nuclear reaction network and adjustments in the mass resolution. Within this two-dimensional plane we quantitatively detail the range of core masses at various stages of evolution, mass locations of the main nuclear burning shells, electron fraction profiles, mass fraction profiles, burning lifetimes, stellar lifetimes, and compactness parameter at core-collapse for models with and without mass loss. Up to carbon burning we generally find mass resolution has a larger impact on the variations than the number of isotopes, while the number of isotopes plays a more significant role in determining the span of the variations for neon, oxygen and silicon burning. Choice of mass resolution dominates the variations in the structure of the intermediate convection zone and secondary convection zone during core and shell hydrogen burning respectively, where we find a minimum mass resolution of ≈0.01 M☉ is necessary to achieve convergence in the helium core mass at the ≈5% level. On the other hand, at the onset of core-collapse we find ≈30% variations in the central electron fraction and mass locations of the main nuclear burning shells, a minimum of≈127 isotopes is needed to attain convergence of these values at the ≈10% level.
|
||||||||||||
|
---|