Iron Pseudocarbynes


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
  Neutron Stars and Black Holes:
     Black Hole mass spectrum
     Compact object IMF
     He burn on neutron stars
     Variable white dwarfs
     Pop III with JWST
     Neutrino HR diagram
     Monte Carlo massive stars
     Pre-supernova neutrinos
     Pre-supernova variations
     Monte Carlo white dwarfs
     SAGB stars
     Nugrid Yields I
     Classical novae
     He shell convection
     Presolar grains
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS YouTube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 MESA VI
2022 MESA in Don't Look Up
2022 MESA Marketplace
2012-2023 MESA Schools
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
On the Structure, Magnetic Properties, and Infrared Spectra of Iron Pseudocarbynes in the Interstellar Medium (2019)
Carbon chains, especially polyynes, are the building blocks of complex molecules such as polycyclic aromatic hydrocarbons and fullerenes, and polyynes are observed in circumstellar and interstellar (CIS) environments. Yet these same CIS environments show only low levels of gaseous iron despite it being the fourth most abundant element in the solar abundance pattern.

In this article we explore the structure, magnetic properties, and synthetic infrared (IR) spectra of iron bound to polyynes, yielding what we call iron pseudocarbynes. We find that polyynes of all lengths are characterized by an IR-active CH stretching feature at λ ∼ 3 μm, and an IR-active CCH/CCC bending feature at $\lambda \simeq$ 16 μm. The CCH bending feature exhibits a redshift in iron pseudocarbynes such as Fe12C2H2, appearing at $\lambda \simeq$ 15.8 μm with an IR intensity that is reduced by a factor of ∼ 5. Similarly, iron pseudocarbynes with different carbon-chain lengths such as Fe13C2H2 and Fe13(C2H2)6 also show IR features at nearly the same wavelengths with reduced IR intensities. Iron pseudocarbynes may have been overlooked because, based on calculations, their IR spectra are, within experimental uncertainties, identical to astronomically observed, iron-free species. The occurrence of iron pseudocarbynes in CIS environments would enhance Fe depletion, facilitate production of thermodynamically stable long-chain polyynes, provide a catalytic bridge over the composition gap between molecules containing nine or fewer carbon atoms and complex molecules, and supply a potential mechanism for the modulation and polarization of magnetic fields in CIS environments.


IR spectra of C9NH and different CnH2

IR spectra of Fe13-C6H2 and Fe13-(C6H2)6

Spin densities of Fe13-(C6H2)6


*        * *

* * * *