|
|||||||||
Home Astronomy research Software Infrastructure: MESA FLASH-X STARLIB MESA-Web starkiller-astro My instruments White dwarf pulsations: 12C(α,γ) & overshooting Probe of 12C(α,γ)16O Impact of 22Ne Impact of ν cooling Variable white dwarfs MC reaction rates Micronovae Novae White dwarf supernova: Stable nickel production Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density Tracer particle burning Subsonic burning fronts Supersonic fronts W7 profiles Massive stars: Pop III with HST/JWST Rotating progenitors 3D evolution to collapse MC reaction rates Pre-SN variations Massive star supernova: Yields of radionuclides 26Al & 60Fe 44Ti, 60Co & 56Ni SN 1987A light curve Constraints on Ni/Fe An r-process Effects of 12C +12C Neutron Stars and Black Holes: Black Hole spectrum Mass Gap with LVK Compact object IMF He burn neutron stars Neutrino Emission: Neutrino emission from stars Identifying the Pre-SN Neutrino HR diagram Pre-SN Beta Processes Pre-SN neutrinos Stars: Hypatia catalog SAGB stars Nugrid Yields I He shell convection BBFH at 40 years γ-rays within 100 Mpc Iron Pseudocarbynes Pre-Solar Grains: C-rich presolar grains SiC Type U/C grains Grains from massive stars Placing the Sun SiC Presolar grains Chemical Evolution: Radionuclides in 2020s Zone models H to Zn Mixing ejecta Thermodynamics, Opacities & Networks Radiative Opacity Skye EOS Helm EOS Five EOSs Equations of State 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software Instruments AAS Journals 2024 AAS YouTube 2024 AAS Peer Review Workshops 2024 ASU Energy in Everyday Life 2024 MESA Classroom Outreach and Education Materials Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Supernova fallback: a possible site for the r-process (2006)
In this article we investigate the mass ejected by fallback in a supernova explosion. Trans-iron element production beyond the second peak is made possible by a rapid (< 1 ms) freezeout of α-particles that leaves behind a large nucleon (including protons!) to r-process seed ratio. This rapid phase is followed by a relatively long (≤ 15 ms) simmering phase at < 2x109 K, which is a consequence of the hydrodynamic trajectory of the turbulent flows in the fallback outburst. During the slow phase, heavy elements beyond the second peak are first made through rapid capture of both protons and neutrons. The flow stays close to the valley of stability during this phase. After freezeout of protons the remaining neutrons cause a shift to short-lived isotopes, as is typical for the r-process. A low electron fraction is not required in this model; however, the detailed final distribution is sensitive to the electron fraction. Our simulations suggest that supernova fallback is a viable alternative scenario for the r-process. Brad Meyer's article, is highly relevant in this scenario.
|
||||||||
|
---|