Sedov Blast Wave
Verification Problem


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf pulsations:
     12C(α,γ) & overshooting
     Probe of 12C(α,γ)16O
     Impact of 22Ne
     Impact of ν cooling
     Variable white dwarfs
     MC reaction rates
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density
     Tracer particle burning
     Subsonic burning fronts
     Supersonic fronts
     W7 profiles
  Massive stars:
     Pop III with HST/JWST
     Rotating progenitors
     3D evolution to collapse
     MC reaction rates
     Pre-SN variations
  Massive star supernova:
     Yields of radionuclides
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     SN 1987A light curve
     Constraints on Ni/Fe
     An r-process
     Effects of 12C +12C
  Neutron Stars and Black Holes:
     Black Hole spectrum
     Mass Gap with LVK
     Compact object IMF
     He burn neutron stars
  Neutrino Emission:
     Neutrino emission from stars
     Identifying the Pre-SN
     Neutrino HR diagram
     Pre-SN Beta Processes
     Pre-SN neutrinos
     Hypatia catalog
     SAGB stars
     Nugrid Yields I
     He shell convection
     BBFH at 40 years
     γ-rays within 100 Mpc
     Iron Pseudocarbynes
  Pre-Solar Grains:
     C-rich presolar grains
     SiC Type U/C grains
     Grains from massive stars
     Placing the Sun
     SiC Presolar grains
  Chemical Evolution:
     Radionuclides in 2020s
     Zone models H to Zn
     Mixing ejecta
  Thermodynamics & Networks
     Skye EOS
     Helm EOS
     Five EOSs
     Equations of State
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software Instruments
AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
The tool sedov.tbz calculates Sedov solutions. Jeremiah Moskal and Jared Workman have ported/refactored this instrument to sedov_python.zip.

The venerable Sedov problem might appear to be an old solved problem. However, there is a paucity of open-knowledge software instruments that find all possible families of real solutions, in all common geometries, and address all the removable singularities. In this article we describe the generation of robust numerical solutions for a Sedov blast wave propagating through a density gradient $\rho = \rho_0 r^{-\omega}$ in planar, cylindrical or spherical geometry for the standard, transitional, and vacuum cases. In the standard case a nonzero solution extends from the shock to the origin, where the pressure is finite. In the transitional case a nonzero solution extends from the shock to the origin, where the pressure vanishes. In the vacuum case a nonzero solution extends from the shock to a boundary point, where the density vanishes. See Jim Kamm's article and David Book's slightly irreverant article.

The constant density, spherically symmetric Sedov blast wave is a stalwart test case for verification of hydrodynamic codes. However, it is not a particularily difficult test for a modern shock capturing hydrocode. In this article we identify more challenging Sedov blast waves for hydrocode verification purposes. Analytic and numerical solutions for verification purposes are discussed in this article, this article, and this article.

Four Sedov functions describe the spatial variation of density, material speed, and pressure with distance at any point in time:

Spherical geometry:
image image
image image

Cylindrical geometry:
image image
image image

Planar geometry:
image image
image image

Energy Integral:

Some verification efforts:
image image