|
|||||
Home Astronomy research Software Infrastructure: MESA FLASH-X STARLIB MESA-Web starkiller-astro My instruments Neutrino Emission: De-excitation Neutrinos Neutrino emission from stars Identifying the Pre-SN Neutrino HR diagram Pre-SN Beta Processes Pre-SN neutrinos White dwarf pulsations: 12C(α,γ) & overshooting Probe of 12C(α,γ)16O Impact of 22Ne Impact of ν cooling Variable white dwarfs MC reaction rates Micronovae Novae White dwarf supernova: Stable nickel production Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density Tracer particle burning Subsonic burning fronts Supersonic fronts W7 profiles Massive stars: Pop III with HST/JWST Rotating progenitors 3D evolution to collapse MC reaction rates Pre-SN variations Massive star supernova: Yields of radionuclides 26Al & 60Fe 44Ti, 60Co & 56Ni SN 1987A light curve Constraints on Ni/Fe An r-process Effects of 12C +12C Neutron Stars and Black Holes: Black Hole spectrum Mass Gap with LVK Compact object IMF He burn neutron stars Stars: Hypatia catalog SAGB stars Nugrid Yields I He shell convection BBFH at 40 years γ-rays within 100 Mpc Iron Pseudocarbynes Pre-Solar Grains: C-rich presolar grains SiC Type U/C grains Grains from massive stars Placing the Sun SiC Presolar grains Chemical Evolution: Radionuclides in 2020s Zone models H to Zn Mixing ejecta Thermodynamics, Opacities & Networks Radiative Opacity Skye EOS Helm EOS Five EOSs Equations of State 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software Instruments AAS Journals 2025 AAS YouTube 2025 AAS Peer Review Workshops 2025 ASU Energy in Everyday Life 2025 MESA Classroom Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Mixing of Supernova Ejecta into Molecular Clouds (2012)
Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant ($>$10 pc) cloud core, simultaneously enriching it and triggering its collapse. In this article, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500$^3$ effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances $\simeq$ 10$^{18}$ cm and mix effectively with large regions of star-forming molecular gas. In fact, the $\simeq$ M$_{\odot}$ of high-metallicity ejecta from a single core-collapse supernova is likely to mix with $\simeq$ 2$\times$ 10$^4$ M$_{\odot}$ of molecular gas material as it is collapsing. Thus, all stars forming late ($\approx$ 5 Myr) n the evolution of an H II region may be contaminated by supernova ejecta at the level $\simeq$10$^{-4}$. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system, and is potentially consistent with the observed variability in stellar elemental abundances. Supernova contamination of forming planetary systems may be a common, universal process.
|
||||
|
---|