*
Cococubed.com

26Al and 60Fe
From Supernovae Explosions

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH-X
     STARLIB
     MESA-Web
     starkiller-astro
     My instruments
  Neutrino Emission:
     De-excitation Neutrinos
     Neutrino emission from stars
     Identifying the Pre-SN
     Neutrino HR diagram
     Pre-SN Beta Processes
     Pre-SN neutrinos
  White dwarf pulsations:
     12C(α,γ) & overshooting
     Probe of 12C(α,γ)16O
     Impact of 22Ne
     Impact of ν cooling
     Variable white dwarfs
     MC reaction rates
     Micronovae
     Novae
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density
     Tracer particle burning
     Subsonic burning fronts
     Supersonic fronts
     W7 profiles
  Massive stars:
     Pop III with HST/JWST
     Rotating progenitors
     3D evolution to collapse
     MC reaction rates
     Pre-SN variations
  Massive star supernova:
     Yields of radionuclides
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     SN 1987A light curve
     Constraints on Ni/Fe
     An r-process
     Effects of 12C +12C
  Neutron Stars and Black Holes:
     Black Hole spectrum
     Mass Gap with LVK
     Compact object IMF
     He burn neutron stars
  Stars:
     Hypatia catalog
     SAGB stars
     Nugrid Yields I
     He shell convection
     BBFH at 40 years
     γ-rays within 100 Mpc
     Iron Pseudocarbynes
  Pre-Solar Grains:
     C-rich presolar grains
     SiC Type U/C grains
     Grains from massive stars
     Placing the Sun
     SiC Presolar grains
  Chemical Evolution:
     Radionuclides in 2020s
     Zone models H to Zn
     Mixing ejecta
  Thermodynamics, Opacities & Networks
     Radiative Opacity
     Skye EOS
     Helm EOS
     Five EOSs
     Equations of State
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software Instruments
AAS Journals
   2025 AAS YouTube
   2025 AAS Peer Review Workshops

2025 ASU Energy in Everyday Life
2025 MESA Classroom

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Inner Milky Way Summary (2015):

image



Models:
In this article, we explore the current abundances, fluxes, and spatial distributions of two key gamma-ray radioactivities, $^{26}$Al and $^{60}$Fe using recently calculated yields for Type II supernovae, along with models for chemical evolution and the distribution of mass in the interstellar medium. The estimated steady state production rates are 2.0 $\pm$ 1.0 M$_{\odot}$ / Myr for $^{26}$Al and 0.75 $\pm$ M$_{\odot}$ / Myr for $^{60}$Fe. This corresponds to 2.2 $\pm$ 1.1 M$_{\odot}$ of $^{26}$Al and 1.7 $\pm$ 0.9 M$_{\odot}$ of $^{60}$Fe in the present interstellar medium. Predictions for the $^{60}$Fe mass distribution, total mass, and flux map are given, in particular a $^{60}$Fe / $^{26}$Al flux ratio of 0.16 $\pm$ 0.12.

image
26Al profile for a 25 Msun model
image
60Fe profile for a 25 Msun model
image
26Al & 60Fe profiles together



Observations:
The gamma-ray lines of 60Fe were measured by Smith (2004) using RHESSI and then by Wang et al (2007) using INTEGRAL. Both observations yield an $^{60}$Fe / $^{26}$Al flux ratio of 0.17 $\pm$ 0.05. Bouchet et al (2015) refine the INTEGRAL estimates to 0.14 $\pm$ 0.1.


image
RHESSI 26Al measurement
image
RHESSI 60Fe measurement
image
Integral 60Fe measurement
image
INTEGRAL 2015 map
image
Integral Map Zoom



Experiment:

image
60Fe decay scheme
image
60Fe lifetime measurement
image
26Al(n,α) measurement
image
26Al(n,p) measurement
image
60Fe(n,γ)61Fe cross section