![]() |
|
|||||||||||||||||
Home Astronomy research Software Infrastructure: MESA FLASH STARLIB MESA-Web starkiller-astro My instruments White dwarf supernova: Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density effects Tracer particle burning Subsonic burning fronts Supersonic burning fronts W7 profiles Massive star supernova: Rotating progenitors 3D evolution 26Al & 60Fe 44Ti, 60Co & 56Ni Yields of radionuclides Effects of 12C +12C SN 1987A light curve Constraints on Ni/Fe ratios An r-process Neutron Stars and Black Holes: Black Hole Mass Gap Compact object IMF Stars: Neutrino HR diagram Pulsating white dwarfs Pop III with JWST Monte Carlo massive stars Neutrinos from pre-SN Pre-SN variations Monte Carlo white dwarfs SAGB stars Classical novae He shell convection Presolar grains He burn on neutron stars BBFH at 40 years Chemical Evolution: Iron Pseudocarbynes Radionuclides in the 2020s Hypatia catalog Zone models H to Zn Mixing ejecta γ-rays within 100 Mpc Thermodynamics & Networks Stellar EOS 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software instruments Presentations Illustrations cococubed YouTube Bicycle adventures Public Outreach Education materials 2022 ASU Solar Systems Astronomy 2022 ASU Energy in Everyday Life AAS Journals AAS YouTube 2022 Earendel, A Highly Magnified Star 2022 TV Columbae, Micronova 2022 White Dwarfs and 12C(α,γ)16O 2022 MESA in Don't Look Up 2022 MESA Marketplace 2022 MESA Summer School 2022 MESA Classroom 2021 Bill Paxton, Tinsley Prize Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Inner Milky Way Summary (2015):
Models: In this article, we explore the current abundances, fluxes, and spatial distributions of two key gamma-ray radioactivities, $^{26}$Al and $^{60}$Fe using recently calculated yields for Type II supernovae, along with models for chemical evolution and the distribution of mass in the interstellar medium. The estimated steady state production rates are 2.0 $\pm$ 1.0 M$_{\odot}$ / Myr for $^{26}$Al and 0.75 $\pm$ M$_{\odot}$ / Myr for $^{60}$Fe. This corresponds to 2.2 $\pm$ 1.1 M$_{\odot}$ of $^{26}$Al and 1.7 $\pm$ 0.9 M$_{\odot}$ of $^{60}$Fe in the present interstellar medium. Predictions for the $^{60}$Fe mass distribution, total mass, and flux map are given, in particular a $^{60}$Fe / $^{26}$Al flux ratio of 0.16 $\pm$ 0.12.
Observations: The gamma-ray lines of 60Fe were measured by Smith (2004) using RHESSI and then by Wang et al (2007) using INTEGRAL. Both observations yield an $^{60}$Fe / $^{26}$Al flux ratio of 0.17 $\pm$ 0.05. Bouchet et al (2015) refine the INTEGRAL estimates to 0.14 $\pm$ 0.1.
Experiment:
|
|||||||||||||||||
|
---|