*
Cococubed.com


Monte Carlo Massive Stars

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH-X
     STARLIB
     MESA-Web
     starkiller-astro
     My instruments
  Neutrino Emission:
     De-excitation Neutrinos
     Neutrino emission from stars
     Identifying the Pre-SN
     Neutrino HR diagram
     Pre-SN Beta Processes
     Pre-SN neutrinos
  White dwarf pulsations:
     12C(α,γ) & overshooting
     Probe of 12C(α,γ)16O
     Impact of 22Ne
     Impact of ν cooling
     Variable white dwarfs
     MC reaction rates
     Micronovae
     Novae
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density
     Tracer particle burning
     Subsonic burning fronts
     Supersonic fronts
     W7 profiles
  Massive stars:
     Pop III with HST/JWST
     Rotating progenitors
     3D evolution to collapse
     MC reaction rates
     Pre-SN variations
  Massive star supernova:
     Yields of radionuclides
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     SN 1987A light curve
     Constraints on Ni/Fe
     An r-process
     Effects of 12C +12C
  Neutron Stars and Black Holes:
     Black Hole spectrum
     Mass Gap with LVK
     Compact object IMF
     He burn neutron stars
  Stars:
     Hypatia catalog
     SAGB stars
     Nugrid Yields I
     He shell convection
     BBFH at 40 years
     γ-rays within 100 Mpc
     Iron Pseudocarbynes
  Pre-Solar Grains:
     C-rich presolar grains
     SiC Type U/C grains
     Grains from massive stars
     Placing the Sun
     SiC Presolar grains
  Chemical Evolution:
     Radionuclides in 2020s
     Zone models H to Zn
     Mixing ejecta
  Thermodynamics, Opacities & Networks
     Radiative Opacity
     Skye EOS
     Helm EOS
     Five EOSs
     Equations of State
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software Instruments
AAS Journals
   2025 AAS YouTube
   2025 AAS Peer Review Workshops

2025 ASU Energy in Everyday Life
2025 MESA Classroom

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
The Impact of Nuclear Reaction Rate Uncertainties On The Evolution of Core-Collapse Supernova Progenitors (2018)

In this article we explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the reaction rate probability density functions provided by the STARLIB reaction rate library with MESA stellar models.

We evolve 1000 15 M$_{\odot}$ models from the pre main-sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from $^{1}$H to $^{64}$Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman Rank-Order Correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property.

We find that uncertainties in $^{14}$N$(p,\gamma)^{15}$O, triple-$\alpha$, $^{12}$C$(\alpha,\gamma)^{16}$O, $^{12}$C($^{12}$C,p)$^{23}$Na, $^{12}$C($^{16}$O,p)$^{27}$Al, $^{16}$O($^{16}$O,n)$^{31}$S, $^{16}$O($^{16}$O,p)$^{31}$P, and $^{16}$O($^{16}$O,$\alpha$)$^{28}$Si reaction rates dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation causing uncertainty in various properties of the stellar model in the evolution towards iron core-collapse.

image image
image





image
image image