|
|||||||
Home Astronomy research Software Infrastructure: MESA FLASH-X STARLIB MESA-Web starkiller-astro My instruments Neutrino Emission: De-excitation Neutrinos Neutrino emission from stars Identifying the Pre-SN Neutrino HR diagram Pre-SN Beta Processes Pre-SN neutrinos White dwarf pulsations: 12C(α,γ) & overshooting Probe of 12C(α,γ)16O Impact of 22Ne Impact of ν cooling Variable white dwarfs MC reaction rates Micronovae Novae White dwarf supernova: Stable nickel production Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density Tracer particle burning Subsonic burning fronts Supersonic fronts W7 profiles Massive stars: Pop III with HST/JWST Rotating progenitors 3D evolution to collapse MC reaction rates Pre-SN variations Massive star supernova: Yields of radionuclides 26Al & 60Fe 44Ti, 60Co & 56Ni SN 1987A light curve Constraints on Ni/Fe An r-process Effects of 12C +12C Neutron Stars and Black Holes: Black Hole spectrum Mass Gap with LVK Compact object IMF He burn neutron stars Stars: Hypatia catalog SAGB stars Nugrid Yields I He shell convection BBFH at 40 years γ-rays within 100 Mpc Iron Pseudocarbynes Pre-Solar Grains: C-rich presolar grains SiC Type U/C grains Grains from massive stars Placing the Sun SiC Presolar grains Chemical Evolution: Radionuclides in 2020s Zone models H to Zn Mixing ejecta Thermodynamics, Opacities & Networks Radiative Opacity Skye EOS Helm EOS Five EOSs Equations of State 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software Instruments AAS Journals 2025 AAS YouTube 2025 AAS Peer Review Workshops 2025 ASU Energy in Everyday Life 2025 MESA Classroom Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
The light curve of SN 1987A revisited: constraining production masses of radioactive nuclides (2014)
In this article, we revisit the evidence for the contribution of the long-lived radioactive nuclides $^{44}$Ti, $^{55}$Fe, $^{56}$Co, $^{57}$Co, and $^{60}$Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric luminosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at $^{44}$Ti, $^{55}$Co, $^{56}$Ni, $^{57}$Ni, and $^{60}$Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M($^{56}$Ni) = (7.1 $\pm$ 0.3) × 102 M⊙ and M($^{57}$Ni) = (4.1 $\pm$ 1.8) × 10-3 M⊙. Our best fit $^{44}$Ti mass is M($^{44}$Ti) = (0.55 $\pm$ 0.17) × 10-4 M⊙. which is in disagreement with the much higher (3.1 $\pm$ 0.8) × 10-4 M⊙ recently derived from INTEGRAL observations. The half-lives of $^{60}$Co and $^{55}$Fe are quite similar, which introduces a degeneracy for the fitting algorithm. As a result, we can only give upper limits on the relevant production masses of M($^{55}$Co) < 7.2 × 10-3 M⊙ and M($^{60}$Co) < 1.7 × 10-4 M⊙. Furthermore, we find that the leptonic channels in the decay of $^{57}$Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [$^{57}$Ni / $^{56}$Ni] = 2.5$\pm$1.1 which is still somewhat high but in agreement with gamma-ray observations and model predictions.
|
||||||
|
---|