*
Cococubed.com


Supernova Remnant Metallicity

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH-X
     STARLIB
     MESA-Web
     starkiller-astro
     My instruments
  White dwarf pulsations:
     12C(α,γ) & overshooting
     Probe of 12C(α,γ)16O
     Impact of 22Ne
     Impact of ν cooling
     Variable white dwarfs
     MC reaction rates
     Micronovae
     Novae
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density
     Tracer particle burning
     Subsonic burning fronts
     Supersonic fronts
     W7 profiles
  Massive stars:
     Pop III with HST/JWST
     Rotating progenitors
     3D evolution to collapse
     MC reaction rates
     Pre-SN variations
  Massive star supernova:
     Yields of radionuclides
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     SN 1987A light curve
     Constraints on Ni/Fe
     An r-process
     Effects of 12C +12C
  Neutron Stars and Black Holes:
     Black Hole spectrum
     Mass Gap with LVK
     Compact object IMF
     He burn neutron stars
  Neutrino Emission:
     Neutrino emission from stars
     Identifying the Pre-SN
     Neutrino HR diagram
     Pre-SN Beta Processes
     Pre-SN neutrinos
  Stars:
     Hypatia catalog
     SAGB stars
     Nugrid Yields I
     He shell convection
     BBFH at 40 years
     γ-rays within 100 Mpc
     Iron Pseudocarbynes
  Pre-Solar Grains:
     C-rich presolar grains
     SiC Type U/C grains
     Grains from massive stars
     Placing the Sun
     SiC Presolar grains
  Chemical Evolution:
     Radionuclides in 2020s
     Zone models H to Zn
     Mixing ejecta
  Thermodynamics & Networks
     Skye EOS
     Helm EOS
     Five EOSs
     Equations of State
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software Instruments
AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Observational evidence for high neutronization in supernova remnants: implications for Type Ia supernova progenitors (2017)

The physical process whereby a carbon-oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion.

In this article we report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler, 3C 397 and G337.2-0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler, which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia.

We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2-0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the $^{12}$C$\,$+$^{16}$O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.


image





image
image image






Constraining The Single-Degenerate Channel of Type Ia Supernovae With Stable Iron-Group Elements in SNR 3C 397 (2017)

Recent Suzaku X-ray spectra of SNR 3C 397 indicate enhanced stable iron-group element abundances of Ni, Mn, Cr, and Fe. Seeking to address key questions about the progenitor and explosion mechanism of 3C 397, in this article we compute nucleosynthetic yields from a suite of multidimensional hydrodynamics models in the near-Chandrasekhar mass, single-degenerate paradigm for supernova Type Ia.

Varying the progenitor white dwarf internal structure, composition, ignition, and explosion mechanism, we find the best match to the observed iron-peak elements of 3C 397 are dense (central density $\ge$ 6$\times$10$^{9}$ g cm$^{-3}$), low-carbon white dwarfs that undergo a weak, centrally-ignited deflagration, followed by a subsequent detonation. The amount of $^{56}$Ni produced is consistent with a normal or bright normal supernova Type Ia. A pure deflagration of a centrally-ignited, low central density ($\simeq$ 2$\times$10$^{9}$ g cm$^{-3}$) progenitor white dwarf, frequently considered in the literature, is also found to produce good agreement with 3C 397 nucleosynthetic yields, but leads to a subluminous SN Ia event, in conflict with X-ray linewidth data. Additionally, in contrast to prior work which suggested a large super-solar metallicity for the white dwarf progenitor for SNR 3C 397, we find satisfactory agreement for solar and sub-solar metallicity progenitors. We discuss a range of implications our results have for the single-degenerate channel.


image
image
image