Monte Carlo White Dwarfs


Astronomy research
  Software Infrastructure:
     My instruments
  White dwarf pulsations:
     12C(α,γ) & overshooting
     Probe of 12C(α,γ)16O
     Impact of 22Ne
     Impact of ν cooling
     Variable white dwarfs
     MC reaction rates
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density
     Tracer particle burning
     Subsonic burning fronts
     Supersonic fronts
     W7 profiles
  Massive stars:
     Pop III with HST/JWST
     Rotating progenitors
     3D evolution to collapse
     MC reaction rates
     Pre-SN variations
  Massive star supernova:
     Yields of radionuclides
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     SN 1987A light curve
     Constraints on Ni/Fe
     An r-process
     Effects of 12C +12C
  Neutron Stars and Black Holes:
     Black Hole spectrum
     Mass Gap with LVK
     Compact object IMF
     He burn neutron stars
  Neutrino Emission:
     Neutrino emission from stars
     Identifying the Pre-SN
     Neutrino HR diagram
     Pre-SN Beta Processes
     Pre-SN neutrinos
     Hypatia catalog
     SAGB stars
     Nugrid Yields I
     He shell convection
     BBFH at 40 years
     γ-rays within 100 Mpc
     Iron Pseudocarbynes
  Pre-Solar Grains:
     C-rich presolar grains
     SiC Type U/C grains
     Grains from massive stars
     Placing the Sun
     SiC Presolar grains
  Chemical Evolution:
     Radionuclides in 2020s
     Zone models H to Zn
     Mixing ejecta
  Thermodynamics & Networks
     Skye EOS
     Helm EOS
     Five EOSs
     Equations of State
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software Instruments
AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Properties Of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models (2016)

In this article we investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models.

Focusing on 3 M$_{\odot}$ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95% confidence interval to be $\Delta {\rm M}_{{\rm 1TP}} \simeq 0.019 \, {\rm M}_{\odot}$ for the core mass at the first thermal pulse, $\Delta t_{{\rm 1TP}} \simeq$ 12.50 Myr for the age, $\Delta \log(T_c/K) \simeq$ 0.013 for the central temperature, $\Delta \log(\rho_c / {\rm g \ cm^{-3}}) \simeq$ 0.060 for the central density, $\Delta Y_{{\rm e,c}} \simeq$ 2.6×10-5 for the central electron fraction, $\Delta X_c (^{22}{\rm Ne}) \simeq$ 5.8×10-4, $\Delta X_c(^{12}{\rm C}) \simeq$ 0.392, and $\Delta X_c(^{16}{\rm O}) \simeq$ 0.392. Uncertainties in the experimental $^{12}{\rm C}(\alpha,\gamma)^{16}{\rm O}$, triple-$\alpha$, and $^{14}{\rm N}(p,\gamma)^{15}{\rm O}$ reaction rates dominate these variations.

We also consider a grid of 1 to 6 $M_{\odot}$ models evolved from the pre main-sequence to the final white dwarf to probe the sensitivity of the initial-final mass relation to experimental uncertainties in the hydrogen and helium reaction rates.

image image
image image
image image
image image