|
|||||||||
Home Astronomy research Software Infrastructure: MESA FLASH-X STARLIB MESA-Web starkiller-astro My instruments White dwarf pulsations: 12C(α,γ) & overshooting Probe of 12C(α,γ)16O Impact of 22Ne Impact of ν cooling Variable white dwarfs MC reaction rates Micronovae Novae White dwarf supernova: Stable nickel production Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density Tracer particle burning Subsonic burning fronts Supersonic fronts W7 profiles Massive stars: Pop III with HST/JWST Rotating progenitors 3D evolution to collapse MC reaction rates Pre-SN variations Massive star supernova: Yields of radionuclides 26Al & 60Fe 44Ti, 60Co & 56Ni SN 1987A light curve Constraints on Ni/Fe An r-process Effects of 12C +12C Neutron Stars and Black Holes: Black Hole spectrum Mass Gap with LVK Compact object IMF He burn neutron stars Neutrino Emission: Neutrino emission from stars Identifying the Pre-SN Neutrino HR diagram Pre-SN Beta Processes Pre-SN neutrinos Stars: Hypatia catalog SAGB stars Nugrid Yields I He shell convection BBFH at 40 years γ-rays within 100 Mpc Iron Pseudocarbynes Pre-Solar Grains: C-rich presolar grains SiC Type U/C grains Grains from massive stars Placing the Sun SiC Presolar grains Chemical Evolution: Radionuclides in 2020s Zone models H to Zn Mixing ejecta Thermodynamics, Opacities & Networks Radiative Opacity Skye EOS Helm EOS Five EOSs Equations of State 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software Instruments AAS Journals 2024 AAS YouTube 2024 AAS Peer Review Workshops 2024 ASU Energy in Everyday Life 2024 MESA Classroom Outreach and Education Materials Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
The effect of 12C +12C rate uncertainties on the evolution and nucleosynthesis of massive stars (2012)
In this article, we explore recent suggestions that the 12C +12C reaction rate may be higher than that currently used in stellar models. In order to investigate the effect of an enhanced carbon-burning rate on massive star structure and nucleosynthesis, new stellar evolution models and their yields are presented showing the impact of three different 12C +12C reaction rates. Non-rotating stellar models considering five different initial masses, 15, 20, 25, 32 and 60 M$_{\odot}$, at solar metallicity, were generated using the Geneva Stellar Evolution Code (GENEC) and were later post-processed with the NuGrid Multi-zone Post-Processing Network tool (MPPNP). A dynamic nuclear reaction network of $\simeq$ 1100 isotopes was used to track the s-process nucleosynthesis. An enhanced 12C +12C rate causes core carbon burning to be ignited more promptly and at lower temperature. This reduces the neutrino losses, which increases the core carbon- burning lifetime. An increased carbon-burning rate also increases the upper initial mass limit for which a star exhibits a convective carbon core (rather than a radiative one). Carbon-shell burning is also affected, with fewer convective-shell episodes and convection zones that tend to be larger in mass. Consequently, the chance of an overlap between the ashes of carbon-core burning and the following carbon shell convection zones is increased, which can cause a portion of the ashes of carbon-core burning to be included in the carbon shell. Therefore, during the supernova explosion, the ejecta will be enriched by s-process nuclides synthesized from the carbon-core s-process. The yields were used to estimate the weak s-process component in order to compare with the Solar system abundance distribution. The enhanced rate models were found to produce a significant proportion of Kr, Sr, Y, Zr, Mo, Ru, Pd and Cd in the weak component, which is primarily the signature of the carbon-core s-process. Consequently, it is shown that the production of isotopes in the Kr-Sr region can be used to constrain the 12C + 12C rate using the current branching ratio for $\alpha$- and p-exit channels.
The 12C +12C reaction and the impact on nucleosynthesis in massive stars (2012) Despite much effort in the past decades, the C-burning reaction rate is uncertain by several orders of magnitude, and the relative strength between the different channels $^{12}$C($^{12}$C,$\alpha$)$^{20}$Ne, $^{12}$C($^{12}$C,p)$^{23}$Na and $^{12}$C($^{12}$C,n)$^{23}$Mg is poorly determined. Additionally, in C-burning conditions a high $^{12}$C+$^{12}$C rate may lead to lower central C-burning temperatures and to $^{13}$C($\alpha$,n)$^{16}$O emerging as a more dominant neutron source than $^{22}$Ne($\alpha$,n)$^{25}$Mg, increasing significantly the $s$-process production. This is due to the chain $^{12}$C(p,$\gamma$)$^{13}$N followed by $^{13}$N($\beta$$^+$)$^{13}$C, where the photodisintegration reverse channel $^{13}$N($\gamma$,p)$^{12}$C is strongly decreasing with decreasing temperature. In this article, we explore the impact of the $^{12}$C+$^{12}$C reaction uncertainties on the $s$-process and on explosive $p$-process nucleosynthesis in massive stars, including also fast rotating massive stars at low metallicity. Using various $^{12}$C+$^{12}$C rates, in particular an upper and lower rate limit of $\sim$ 50000 higher and $\sim$ 20 lower than the standard rate at 5$\times$10$^8$ K, five 25 M$_{\odot}$ stellar models are calculated. The enhanced $s$-process signature due to $^{13}$C($\alpha$,n)$^{16}$O activation is considered, taking into account the impact of the uncertainty of all three C-burning reaction branches. Consequently, we show that the $p$-process abundances have an average production factor increased up to about a factor of 8 compared to the standard case, efficiently producing the elusive Mo and Ru proton-rich isotopes. We also show that an $s$-process being driven by $^{13}$C($\alpha$,n)$^{16}$O is a secondary process, even though the abundance of $^{13}$C does not depend on the initial metal content. Finally, implications for the Sr-peak elements inventory in the Solar System and at low metallicity are discussed.
|
||||||||
|
---|