moon_sleep150.gif
Cococubed.com


Rayleigh-Taylor

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH-X
     STARLIB
     MESA-Web
     starkiller-astro
     My instruments
  White dwarf pulsations:
     12C(α,γ) & overshooting
     Probe of 12C(α,γ)16O
     Impact of 22Ne
     Impact of ν cooling
     Variable white dwarfs
     MC reaction rates
     Micronovae
     Novae
  White dwarf supernova:
     Stable nickel production
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density
     Tracer particle burning
     Subsonic burning fronts
     Supersonic fronts
     W7 profiles
  Massive stars:
     Pop III with HST/JWST
     Rotating progenitors
     3D evolution to collapse
     MC reaction rates
     Pre-SN variations
  Massive star supernova:
     Yields of radionuclides
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     SN 1987A light curve
     Constraints on Ni/Fe
     An r-process
     Effects of 12C +12C
  Neutron Stars and Black Holes:
     Black Hole spectrum
     Mass Gap with LVK
     Compact object IMF
     He burn neutron stars
  Neutrino Emission:
     Neutrino emission from stars
     Identifying the Pre-SN
     Neutrino HR diagram
     Pre-SN Beta Processes
     Pre-SN neutrinos
  Stars:
     Hypatia catalog
     SAGB stars
     Nugrid Yields I
     He shell convection
     BBFH at 40 years
     γ-rays within 100 Mpc
     Iron Pseudocarbynes
  Pre-Solar Grains:
     C-rich presolar grains
     SiC Type U/C grains
     Grains from massive stars
     Placing the Sun
     SiC Presolar grains
  Chemical Evolution:
     Radionuclides in 2020s
     Zone models H to Zn
     Mixing ejecta
  Thermodynamics & Networks
     Skye EOS
     Helm EOS
     Five EOSs
     Equations of State
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software Instruments
AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
A Comparison of High-Resolution 3D Numerical Simulations of Turbulent Rayleigh-Taylor (RT) Instability: Alpha-Group Collaboration (2004)

In this article, the turbulent Rayleighba variety of high-resolution, multimode, three dimensional numerical simulations (NS). The perturbations are initialized with only short wavelength modes so that the self-similar evolution i.e., bubble diameter Db ∝ amplitude hb) occurs solely by the nonlinear coupling merger of saturated modes. After an initial transient, it is found that hb ∼ α A g t2 , where A=Atwood number, g=acceleration, and t=time. The NS yield Db ∼ hb/3 in agreement with experiment but the simulation value αb ∼ 0.025 ± 0.003 is smaller than the experimental value αb ∼ 0.057 ± 0.008. By analyzing the dominant bubbles, it is found that the small value of αb can be attributed to a density dilution due to fine-scale mixing in our NS without interface reconstruction (IR) or an equivalent entrainment in our NS with IR. This may be characteristic of the mode coupling limit studied here and the associated αb may represent a lower bound that is insensitive to the initial amplitude. Larger values of αb can be obtained in the presence of additional long wavelength perturbations and this may be more characteristic of experiments. Here, the simulation data are also analyzed in terms of bubble dynamics, energy balance and the density fluctuation spectra.

image
Simulation vs Experiment
image
Code verification