|
||||||||||||
Home Astronomy Research 2025 Neutrinos From De-excitation Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Adiabatic white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines Fermi-Dirac functions Polyhedra volume Plane - cube intersection Coating an ellipsoid Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Hydrodynamic test cases Galactic chemical evolution Universal two-body problem Circular and elliptical 3 body The pendulum Phyllotaxis MESA MESA-Web FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc AAS Journals 2025 AAS YouTube 2025 AAS Peer Review Workshops 2025 ASU Energy in Everyday Life 2025 MESA Classroom Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
13 isotopes This reaction network, aprox13.tar.xz, uses 13 isotopes in an alpha-chain from helium to nickel. Heavy-ion (12C+12C, 12C+16O, 16O+16O) are included. A definition of an α-chain reaction network seems prudent. A 'strict' α-chain is only composed of (α,γ) and (γ,α) links among the 13 isotopes 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and 56Ni. It is essential, however, to include (α,p)(p,γ) and (γ,p)(p,α) links in order to obtain reasonably accurate energy generation rates and abundance levels when the temperature exceeds 2.5e9 K. At these elevated temperatures the flows through the (α,p)(p,γ) sequences are faster than the flows through the (α,γ) channels. An (α,p)(p,γ) sequence is, effectively, an (α,γ) reaction through an intermediate isotope. This α-chain reaction network includes 8 (α,p)(p,γ) sequences plus the corresponding inverse sequences by assuming steady-state proton flows through the intermediate isotopes 27Al, 31P, 35Cl, 39K, 43Sc, 47V, 51Mn, and 55Co. This strategy permits inclusion of (α,p)(p,γ) sequences without explicitly evolving the proton or intermediate isotope abundances.
19 isotopes This network, aprox19.tar.xz, is the same network as the 13 isotope network above with additional isotopes to accommodate some types of hydrogen burning (PP chains and steady-state CNO cycles), along with some aspects of photodisintegration into 54Fe. This network is described in Weaver, Zimmerman, & Woosley.
21 isotopes This network, aprox21.tar.xz, adds 56Cr and 56Fe and equilibrium reaction sequences to the 19 isotope network to attain a lower Ye for presupernova models. This network is more-or-less the default workhorse network of MESA.
34 isotopes This reaction network, hhe.tar.xz, combines the pp + hotcno + rp breakout network with the 13 isotope network above for a complete hydrogen + helium burner under most common conditions. 7 isotopes To decrease the execution time and memory it takes to calculate a stellar model means making a choice between having fewer isotopes in the reaction network or having less spatial resolution. The general response to this tradeoff has been to evolve a limited number of isotopes, and thus thus calculate an approximate thermonuclear energy generation rate. The 13 isotope network given above is commonly used for this purpose; one gets most of the energy generated for common thermodynamic conditions at a fraction of the computational cost. Can the number of isotopes be further reduced, and still give relatively accurate energy generation rates? Yes, within reason. This 7 isotope α-chain network, iso7.tar.xz, has been shown to provide a decent representation of nuclear energy generation rates for helium to silicon burning. |
|||||||||||
|
Please cite the relevant references if you publish paper that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship if appropriate. |
---|