*
Cococubed.com


Electron and Positron Chemical Potentials

Home

Astronomy Research
   2025 Neutrinos From De-excitation
   Radiative Opacity
   2024 Neutrino Emission from Stars
   2023 White Dwarfs & 12C(α,γ)16O
   2023 MESA VI
   2022 Earendel, A Highly Magnified Star
   2022 Black Hole Mass Spectrum
   2021 Skye Equation of State
   2021 White Dwarf Pulsations & 22Ne
   Software Instruments
     Stellar equation of states
     EOS with ionization
     EOS for supernovae
     Chemical potentials
     Stellar atmospheres

     Voigt Function
     Jeans escape
     Polytropic stars
     Cold white dwarfs
     Adiabatic white dwarfs

     Cold neutron stars
     Stellar opacities
     Neutrino energy loss rates
     Ephemeris routines
     Fermi-Dirac functions

     Polyhedra volume
     Plane - cube intersection
     Coating an ellipsoid

     Nuclear reaction networks
     Nuclear statistical equilibrium
     Laminar deflagrations
     CJ detonations
     ZND detonations

     Fitting to conic sections
     Unusual linear algebra
     Derivatives on uneven grids
     Pentadiagonal solver
     Quadratics, Cubics, Quartics

     Supernova light curves
     Exact Riemann solutions
     1D PPM hydrodynamics
     Hydrodynamic test cases
     Galactic chemical evolution

     Universal two-body problem
     Circular and elliptical 3 body
     The pendulum
     Phyllotaxis

     MESA
     MESA-Web
     FLASH

     Zingale's software
     Brown's dStar
     GR1D code
     Iliadis' STARLIB database
     Herwig's NuGRID
     Meyer's NetNuc

AAS Journals
   2025 AAS YouTube
   2025 AAS Peer Review Workshops

2025 ASU Energy in Everyday Life
2025 MESA Classroom

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

* The tool in chem_poten.tbz returns the electron and positron chemical potentials as a function of temperature, density and Ye for a fully ionized stellar plasma.

The electron chemical potentials returned do not include the electron rest mass, so the value returned is the "kinetic chemical potential". This means that the positron chemical potential must have the rest-mass terms appear explicitly, ηpos = -ηele - 2mec2. One can see this being applied at the end of the relevant routine.

This tool is derived from the Helmholtz equation of state. A stand-alone electron/positron chemical potential solver may be useful for Compton opacities (e.g., Poutanen 2017) weak reaction rates, reaction rate screening factors, and others where invoking the full machinery of an equation of state may not be as desirable.


Ten tips about the chemical potential (from Peter Saeta)
  1. It expresses how eager a system is for particles.
  2. In equilibrium it is equal in two systems placed in diffusive contact.
  3. Particles move from a region of high chemical potential to a region of low chemical potential.
  4. It can be found by differentiating thermodynamic potentials with respect to N.
  5. It has an internal part and an external part; the external part is just a normal per-particle potential energy, such as mgh.
  6. It is the Gibbs free energy per particle, G/N.
  7. It is used to describe chemical equilibria.
  8. For a monatomic ideal gas, it is kT ln (νQ/ν).
  9. It is enormously useful in describing equations of state.
  10. It is the factor you use to get the particle number right!

Number 10 is probably the most pragmatic. In the tool chem_poten.tbz, one balances the number density of electrons from fully ionized material with the net number density of electrons and positrons coming from the relevant Fermi-Dirac statistics.
 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.