Coating an ellipsoid


Astronomy Research
   2024 Radiative Opacity
   2024 Neutrino Emission from Stars
   2023 White Dwarfs & 12C(α,γ)16O
   2023 MESA VI
   2022 Earendel, A Highly Magnified Star
   2022 Black Hole Mass Spectrum
   2021 Skye Equation of State
   2021 White Dwarf Pulsations & 22Ne
   Software Instruments
     Stellar equation of states
     EOS with ionization
     EOS for supernovae
     Chemical potentials
     Stellar atmospheres

     Voigt Function
     Jeans escape
     Polytropic stars
     Cold white dwarfs
     Adiabatic white dwarfs

     Cold neutron stars
     Stellar opacities
     Neutrino energy loss rates
     Ephemeris routines
     Fermi-Dirac functions

     Polyhedra volume
     Plane - cube intersection
     Coating an ellipsoid

     Nuclear reaction networks
     Nuclear statistical equilibrium
     Laminar deflagrations
     CJ detonations
     ZND detonations

     Fitting to conic sections
     Unusual linear algebra
     Derivatives on uneven grids
     Pentadiagonal solver
     Quadratics, Cubics, Quartics

     Supernova light curves
     Exact Riemann solutions
     1D PPM hydrodynamics
     Hydrodynamic test cases
     Galactic chemical evolution

     Universal two-body problem
     Circular and elliptical 3 body
     The pendulum


     Zingale's software
     Brown's dStar
     GR1D code
     Iliadis' STARLIB database
     Herwig's NuGRID
     Meyer's NetNuc

AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Let's start from something familiar and then generalize it. Consider sphere of radius r. Increase the radius by a distance d. The new volume is \begin{equation} \dfrac{4}{3} \pi (r + d)^3 = \dfrac{4}{3} \pi (r^3 + 3 r^2 d + 3 r d^2 + d^3) = \dfrac{4}{3} \pi r^3 + 4 \pi r^2 d + 4 \pi r d^2 + \dfrac{4}{3} \pi d^3 \ . \label{1} \tag{1} \end{equation} So the volume of the coating (shell) is \begin{equation} {\rm Volume_{new}} - {\rm Volume_{old}} = {\rm Volume_{coat}} = 4 \pi r^2 d + 4 \pi r d^2 + \dfrac{4}{3} \pi d^3 \label{2} \tag{2} \end{equation} or in terms of the polynomial $d$, \begin{equation} {\rm Volume_{coat}} = ({\rm old\ surface\ area} \times d) + (\pi \cdot {\rm mean \ length} \times d^2) + \left(\dfrac{4}{3} \pi \times d^3\right) \ , \label{3} \tag{3} \end{equation} which is Steiner's formula for any convex shape expanded by a distance d along the surface normals in 3D. Note growth along surface normals is not the same as scaling the object to a bigger size - only for a sphere are the two equivalent. An amazing fact is Steiner's formula for the polynomial in d is valid for any expanding convex shape - spheres, ellipsoids, cubes, whatever. For small $d$, the first term dominates - the thin shell approximation. Blow anything up large enough along the surface normals and it looks like a sphere, the third term. These two limits are connected by the second term, the "mean width", which geometrically is a mean curvature (units of 1/length) times a surface area: \begin{equation} \ell = \frac{1}{\pi} \int_S H \ {\rm d}A \label{4} \tag{4} \end{equation} For a sphere, the mean curvature is $H = 1/2 \cdot (1/r + 1/r) = 1/r$. The mean width is then $\ell = 1/(\pi) \cdot 1/r \cdot 4 \pi r^2 = 4 r$, which is twice the more intuitive average Euler width of $2 r$. This gives the second term on the right hand side of equation $\ref{3}$ as $4\pi r d^2$, which agrees with second term on the right-hand side of equation $\ref{2}$.

For an ellipsoid in standard form, \begin{equation} \left ( \dfrac{x}{a} \right )^2 + \left ( \dfrac{y}{b} \right )^2 + \left ( \dfrac{z}{c} \right )^2 = 1 \label{5} \tag{5} \end{equation} The volume is \begin{equation} {\rm V = \dfrac{4}{3} \pi \ a b c } \label{6} \tag{6} \end{equation} From the first fundamental form for the ellipsoid, the surface area is \begin{equation} \begin{split} A(a,b,c) & = \int_S \sqrt{EG - F^2} \\ & = a b c \int_0^{2\pi} \int_0^{\pi} \sqrt{ (a^{-2} \cos^2v + b^{-2} \sin^2v) \sin^2u + c^{-2} \cos^2u} \sin u \ {\rm d}u {\rm d}v \\ & = 2 \pi c^2 + \dfrac{2 \pi a b}{\sin(\phi)} \cdot [ E(\phi,k) \sin^2(\phi) + F(\phi,k) \cos^2(\phi) ] \, \end{split} \label{7} \tag{7} \end{equation} where $\cos(\phi) = c/a$, $k^2 = a^2/b^2 \cdot (b^2 - c^2) / (a^2 - c^2)$, $F(\phi,k)$ is the Legendre form of the first incomplete elliptic integral, and $E(\phi,k)$ is the Legendre form of the second incomplete elliptic integral. Presumably one has the tools to numerically calculate these elliptic functions, hence the surface area, to near the precision of the chosen arithmetic. Note when $a=b=c$ that this expression reduces to the surface area of a sphere.

Using the second fundamental form for the mean curvature, the mean width is \begin{equation} \begin{split} \ell(a,b,c) &= \frac{1}{\pi} \int_S \frac{eG - 2fF + gE}{EG - F^2} \ {\rm d}A \\ &= \frac{1}{ \pi} \int_0^{2\pi} \int_0^{\pi} \sqrt{ (a^{2} \cos^2v + b^{2} \sin^2v) \sin^2u + c^{2} \cos^2u} \sin u \ {\rm d}u {\rm d}v \\ &= \dfrac{a b c}{\pi} \cdot A \left ( \frac{1}{a},\frac{1}{b},\frac{1}{c} \right ) \ . \end{split} \label{8} \tag{8} \end{equation} Wild! The mean width of an ellipsoid is akin to the volume of the ellipsoid times the surface area evaluated at the curvatures. Note when $a=b=c=r$ that this reduces to the mean length of a sphere, $\ell = 4r$.

The tool coating.f90.zip implements the above equations to calculate the volume of a coating, expanding along its normal, of a triaxial ellipsoid. The $a=b=c$ degenerate case of a sphere is included.


Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.