|
|||
Home Astronomy Research 2025 Neutrinos From De-excitation Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Adiabatic white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines Fermi-Dirac functions Polyhedra volume Plane - cube intersection Coating an ellipsoid Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Hydrodynamic test cases Galactic chemical evolution Universal two-body problem Circular and elliptical 3 body The pendulum Phyllotaxis MESA MESA-Web FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc AAS Journals 2025 AAS YouTube 2025 AAS Peer Review Workshops 2025 ASU Energy in Everyday Life 2025 MESA Classroom Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Let's start from something familiar and then generalize it. Consider sphere of radius r. Increase the radius by a distance d. The new volume is \begin{equation} \dfrac{4}{3} \pi (r + d)^3 = \dfrac{4}{3} \pi (r^3 + 3 r^2 d + 3 r d^2 + d^3) = \dfrac{4}{3} \pi r^3 + 4 \pi r^2 d + 4 \pi r d^2 + \dfrac{4}{3} \pi d^3 \ . \label{1} \tag{1} \end{equation} So the volume of the coating (shell) is \begin{equation} {\rm Volume_{new}} - {\rm Volume_{old}} = {\rm Volume_{coat}} = 4 \pi r^2 d + 4 \pi r d^2 + \dfrac{4}{3} \pi d^3 \label{2} \tag{2} \end{equation} or in terms of the polynomial $d$, \begin{equation} {\rm Volume_{coat}} = ({\rm old\ surface\ area} \times d) + (\pi \cdot {\rm mean \ length} \times d^2) + \left(\dfrac{4}{3} \pi \times d^3\right) \ , \label{3} \tag{3} \end{equation} which is Steiner's formula for any convex shape expanded by a distance d along the surface normals in 3D. Note growth along surface normals is not the same as scaling the object to a bigger size - only for a sphere are the two equivalent. An amazing fact is Steiner's formula for the polynomial in d is valid for any expanding convex shape - spheres, ellipsoids, cubes, whatever. For small $d$, the first term dominates - the thin shell approximation. Blow anything up large enough along the surface normals and it looks like a sphere, the third term. These two limits are connected by the second term, the "mean width", which geometrically is a mean curvature (units of 1/length) times a surface area: \begin{equation} \ell = \frac{1}{\pi} \int_S H \ {\rm d}A \label{4} \tag{4} \end{equation} For a sphere, the mean curvature is $H = 1/2 \cdot (1/r + 1/r) = 1/r$. The mean width is then $\ell = 1/(\pi) \cdot 1/r \cdot 4 \pi r^2 = 4 r$, which is twice the more intuitive average Euler width of $2 r$. This gives the second term on the right hand side of equation $\ref{3}$ as $4\pi r d^2$, which agrees with second term on the right-hand side of equation $\ref{2}$. For an ellipsoid in standard form, \begin{equation} \left ( \dfrac{x}{a} \right )^2 + \left ( \dfrac{y}{b} \right )^2 + \left ( \dfrac{z}{c} \right )^2 = 1 \label{5} \tag{5} \end{equation} The volume is \begin{equation} {\rm V = \dfrac{4}{3} \pi \ a b c } \label{6} \tag{6} \end{equation} From the first fundamental form for the ellipsoid, the surface area is \begin{equation} \begin{split} A(a,b,c) & = \int_S \sqrt{EG - F^2} \\ & = a b c \int_0^{2\pi} \int_0^{\pi} \sqrt{ (a^{-2} \cos^2v + b^{-2} \sin^2v) \sin^2u + c^{-2} \cos^2u} \sin u \ {\rm d}u {\rm d}v \\ & = 2 \pi c^2 + \dfrac{2 \pi a b}{\sin(\phi)} \cdot [ E(\phi,k) \sin^2(\phi) + F(\phi,k) \cos^2(\phi) ] \, \end{split} \label{7} \tag{7} \end{equation} where $\cos(\phi) = c/a$, $k^2 = a^2/b^2 \cdot (b^2 - c^2) / (a^2 - c^2)$, $F(\phi,k)$ is the Legendre form of the first incomplete elliptic integral, and $E(\phi,k)$ is the Legendre form of the second incomplete elliptic integral. Presumably one has the tools to numerically calculate these elliptic functions, hence the surface area, to near the precision of the chosen arithmetic. Note when $a=b=c$ that this expression reduces to the surface area of a sphere. Using the second fundamental form for the mean curvature, the mean width is \begin{equation} \begin{split} \ell(a,b,c) &= \frac{1}{\pi} \int_S \frac{eG - 2fF + gE}{EG - F^2} \ {\rm d}A \\ &= \frac{1}{ \pi} \int_0^{2\pi} \int_0^{\pi} \sqrt{ (a^{2} \cos^2v + b^{2} \sin^2v) \sin^2u + c^{2} \cos^2u} \sin u \ {\rm d}u {\rm d}v \\ &= \dfrac{a b c}{\pi} \cdot A \left ( \frac{1}{a},\frac{1}{b},\frac{1}{c} \right ) \ . \end{split} \label{8} \tag{8} \end{equation} Wild! The mean width of an ellipsoid is akin to the volume of the ellipsoid times the surface area evaluated at the curvatures. Note when $a=b=c=r$ that this reduces to the mean length of a sphere, $\ell = 4r$. The tool coating.f90.zip implements the above equations to calculate the volume of a coating, expanding along its normal, of a triaxial ellipsoid. The $a=b=c$ degenerate case of a sphere is included. |
||
|
Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate. |
---|