|
||||
Home Astronomy Research Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Adiabatic white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines Fermi-Dirac functions Polyhedra volume Plane - cube intersection Coating an ellipsoid Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Hydrodynamic test cases Galactic chemical evolution Universal two-body problem Circular and elliptical 3 body The pendulum Phyllotaxis MESA MESA-Web FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc AAS Journals 2024 AAS YouTube 2024 AAS Peer Review Workshops 2024 ASU Energy in Everyday Life 2024 MESA Classroom Outreach and Education Materials Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Given (i) a fuel's temperature, density and composition and (ii) that the fuel's ashes are in their equilibrium state (e.g., NSE in the nuclear case), then the Chapman-Jouget (CJ; 1890) detonation solution follows from solving the the mass and momentum equation (which defines the "Rayleigh line" ; see illustration below) $$ (P_2 - P_1) - (v_2 \rho_2)^2 \cdot (v_1 - v_2) = 0 \label{rayleigh} \tag{1} $$ together with the energy equation (which defines the "Hugoniot curve"; see illustration) $$ E_1 + q_{\rm nuc} - E_2 + \dfrac{1}{2} (P_1 + P_2) (v_1 - v_2) = 0 \label{hugoniot} \tag{2} $$ where $P$ is the pressure, $\rho$ is the density, $v$ is the material speed, $E$ is the specific internal energy, and $q_{\rm nuc}$ is the energy released by burning in going from the unshocked upstream material (subscript 1) to the final post-shock downstream material (subscript 2). These two algebraic equations are to be solved simultaneously with the two algebraic equations for the postshock NSE composition. This is a four-dimensional root find, but it can be done efficiently as two nested two-dimensional root finds. The CJ solution tells you the (i) speed of the detonation and (ii) the thermodynamics of the ashes. The CJ solution doesn't tell you the (a) the width of the fuel-to-ash region, (b) the spatial variations of the variables, or (c) if the solution is a self-sustaining detonation. The tool in cjdet.tar.xz generates CJ solutions using the helmholtz equation of state and relevant parts of the torch network. It will also compute the strong and weak solutions if one chooses to drive the system at a user-specified Mach number. If one wants what a Chapman-Jouget solution doesn't tell you, a ZND detonation might.
|
|||
|
Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate. |
---|