Home
Astronomy Research
Radiative Opacity
2024 Neutrino Emission from Stars
2023 White Dwarfs & 12C(α,γ)16O
2023 MESA VI
2022 Earendel, A Highly Magnified Star
2022 Black Hole Mass Spectrum
2021 Skye Equation of State
2021 White Dwarf Pulsations & 22Ne
Software Instruments
Stellar equation of states
EOS with ionization
EOS for supernovae
Chemical potentials
Stellar atmospheres
Voigt Function
Jeans escape
Polytropic stars
Cold white dwarfs
Adiabatic white dwarfs
Cold neutron stars
Stellar opacities
Neutrino energy loss rates
Ephemeris routines
Fermi-Dirac functions
Polyhedra volume
Plane - cube intersection
Coating an ellipsoid
Nuclear reaction networks
Nuclear statistical equilibrium
Laminar deflagrations
CJ detonations
ZND detonations
Fitting to conic sections
Unusual linear algebra
Derivatives on uneven grids
Pentadiagonal solver
Quadratics, Cubics, Quartics
Supernova light curves
Exact Riemann solutions
1D PPM hydrodynamics
Hydrodynamic test cases
Galactic chemical evolution
Universal two-body problem
Circular and elliptical 3 body
The pendulum
Phyllotaxis
MESA
MESA-Web
FLASH
Zingale's software
Brown's dStar
GR1D code
Iliadis' STARLIB database
Herwig's NuGRID
Meyer's NetNuc
AAS Journals
2024 AAS YouTube
2024 AAS Peer Review Workshops
2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach
and
Education Materials
Other Stuff:
Bicycle Adventures
Illustrations
Presentations
Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
|
The tool sneut5.tbz
implements the analytic fitting formulas of Itoh et al.
1996
for thermal neutrino losses.
In addition, the tool also returns the neutrino loss rate and its derivatives with respect
to its input values: temperature, density, and the composition variables abar and zbar.
As shown in the first figure above, the thermal neutrino losses
has several components:
⚬
Pair production: $e^+ + e^- \rightarrow \nu_e + {\bar \nu}_e$
dominates in massive stars, where $kT \ge 0.1 \ m_ec^2$ especially for $T_9 > 0.5$.
⚬
Photoneutrino: $e^{\pm} + \gamma \rightarrow e^{\pm} + \nu + \bar{ \nu}_e$
⚬
Plasmon neutrino: $\gamma_{{\rm plasmon}} \rightarrow \nu_e + \bar{ \nu}_e$
⚬
Bremsstrahlung: $e^- + A^Z \rightarrow e^- + A^Z + \nu_e + \bar{\nu}_e$
⚬
Recombination: $e^-_{\rm continuum} \rightarrow e^-_{\rm bound} + \nu_e + \bar{ \nu}_e$
Here is how the
Itoh et al
expressions look in the ρ-T plane for pure carbon:
|