|
|||
Home Astronomy Research Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Adiabatic white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines Fermi-Dirac functions Polyhedra volume Plane - cube intersection Coating an ellipsoid Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Hydrodynamic test cases Galactic chemical evolution Universal two-body problem Circular and elliptical 3 body The pendulum Phyllotaxis MESA MESA-Web FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc AAS Journals 2024 AAS YouTube 2024 AAS Peer Review Workshops 2024 ASU Energy in Everyday Life 2024 MESA Classroom Outreach and Education Materials Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Tridiagonal matrices arise from using a 3 point finite difference stencil in one-dimension. Pentadiagonal matrices arise from using a 5 point stencil in one-dimension or a 3 point stencil in two-dimensions. The tool pentadiagonal.tbz contains routine to solve pentadiagonal linear system of equations \begin{equation} a_i u_{i-2} + b_i u_{i-1} + c_i u_i + d_i u_{i+1} + e_iu_{i+2} = f_i \label{eq1} \tag{1} \end{equation} and cyclic pentadiagonal systems with nonzero entries in the lower left and upper right corners of the matrix: \begin{equation} \left[\begin{array}{ccccccccccc} c_{1} & d_{1} & e_1 & 0 & 0 & \ldots & & & & p_1 & p_2\\ b_{2} & c_{2} & d_2 & e_2 & 0 & \ldots & & & & & p_3\\ a_{3} & b_{3} & c_3 & d_3 & e_3 & \ldots & & & & & \\ & & & & & \ldots & & & & & \\ & & & & & \ldots & & & & & \\ & & & & & \ldots & & & & & \\ & & & & & \ldots & a_{n-2} & b_{n-2} & c_{n-2} & d_{n-2} & e_{n-2} \\ p_4 & & & & & \ldots & 0 & a_{n-1} & b_{n-1} & c_{n-1} & e_{n-1} \\ p_5 & p_6 & & & & \ldots & 0 & 0 & a_{n} & b_{n} & c_{n} \end{array}\right] \left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ \ldots \\ \ldots \\ \ldots \\ u_{n-2}\\ u_{n-1}\\ u_n \end{array}\right] = \left[\begin{array}{c} r_1 \\ r_2 \\ r_3 \\ \ldots \\ \ldots \\ \ldots \\ r_{n-2}\\ r_{n-1}\\ r_n \end{array}\right] \label{eq2} \tag{2} \end{equation} Such cyclic forms usually arise from periodic boundary conditions. Heptadiagonal matrices arise from using a 7 point stencil in one-dimension or a 3 point stencil in three-dimensions. The tool heptadiagonal.tbz contains routines to solve heptadiagonal linear system of equations \begin{equation} D_i u_{i-2} + B_i u_{i-2} + b_i u_{i-1} + d_i u_i + a_i u_{i+1} + A_iu_{i+2} + C_iu_{i+2} = r_i \label{eq3} \tag{3} \end{equation} and cyclic heptadiagonal systems with nonzero entries in the lower left and upper right corners of the matrix: \begin{equation} \left[\begin{array}{ccccccccccc} d_{1} & a_{1} & A_1 & C_1 & 0 & 0 & \ldots & & p_1 & p_2 \\ b_{2} & d_{2} & a_2 & A_2 & C_2 & \ddots & \ddots & \ldots & & p_3 \\ B_{3} & b_{3} & d_3 & a_3 & A_3 & C_3 & \ddots & \ddots & \dots & \\ D_{4} & B_{4} & b_4 & d_4 & a_4 & A_4 & C_4 & \ddots & \ddots & \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\ 0 & \ddots & \ddots & D_{n-3} & B_{n-3} & b_{n-3} & d_{n-3} & a_{n-3} & A_{n-3} & C_{n-3} \\ 0 & \ldots & \ddots & \ddots & D_{n-2} & B_{n-2} & b_{n-2} & d_{n-2} & a_{n-2} & A_{n-2} \\ p_4 & 0 & \ldots & \ddots & 0 & D_{n-1} & B_{n-1} & b_{n-1} & d_{n-1} & a_{n-1} \\ p_5 & p_6 & 0 & \ldots & 0 & 0 & D_n & B_{n} & b_{n} & d_{n} \\ \end{array}\right] \left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ u_{n-2}\\ u_{n-1}\\ u_n \end{array}\right] = \left[\begin{array}{c} r_1 \\ r_2 \\ r_3 \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ r_{n-2}\\ r_{n-1}\\ r_n \end{array}\right] \label{eq4} \tag{4} \end{equation} |
||
|
Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate. |
---|