*
Cococubed.com


Nuclear Statistical Equilibrium

Home

Astronomy Research
   2025 Neutrinos From De-excitation
   Radiative Opacity
   2024 Neutrino Emission from Stars
   2023 White Dwarfs & 12C(α,γ)16O
   2023 MESA VI
   2022 Earendel, A Highly Magnified Star
   2022 Black Hole Mass Spectrum
   2021 Skye Equation of State
   2021 White Dwarf Pulsations & 22Ne
   Software Instruments
     Stellar equation of states
     EOS with ionization
     EOS for supernovae
     Chemical potentials
     Stellar atmospheres

     Voigt Function
     Jeans escape
     Polytropic stars
     Cold white dwarfs
     Adiabatic white dwarfs

     Cold neutron stars
     Stellar opacities
     Neutrino energy loss rates
     Ephemeris routines
     Fermi-Dirac functions

     Polyhedra volume
     Plane - cube intersection
     Coating an ellipsoid

     Nuclear reaction networks
     Nuclear statistical equilibrium
     Laminar deflagrations
     CJ detonations
     ZND detonations

     Fitting to conic sections
     Unusual linear algebra
     Derivatives on uneven grids
     Pentadiagonal solver
     Quadratics, Cubics, Quartics

     Supernova light curves
     Exact Riemann solutions
     1D PPM hydrodynamics
     Hydrodynamic test cases
     Galactic chemical evolution

     Universal two-body problem
     Circular and elliptical 3 body
     The pendulum
     Phyllotaxis

     MESA
     MESA-Web
     FLASH

     Zingale's software
     Brown's dStar
     GR1D code
     Iliadis' STARLIB database
     Herwig's NuGRID
     Meyer's NetNuc

AAS Journals
   2025 AAS YouTube
   2025 AAS Peer Review Workshops

2025 ASU Energy in Everyday Life
2025 MESA Classroom

Other Stuff:
   Bicycle Adventures
   Illustrations
   Presentations



Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Below $\simeq 10^6$ K it is not energetic enough for nuclear reactions. Up to $\simeq 5 \times10^9$ K one uses a nuclear reaction network to follow abundance evolutions. Above $\simeq 5 \times10^9$ K it is energetic enough for forward and reverse reactions to be balanced, and abundances are in a state of nuclear statistical equilibrium (NSE). For Maxwell-Boltzmann statistics, the mass fractions $X_i$ of any isotope $i$ in NSE is \begin{equation} X_i(A_i,Z_i,T,\rho) = {A \over N_A \rho} \omega(T) \left ( 2\pi kT M(A_i,Z_i) \over h^2 \right )^{3/2} \exp \left [ { \mu(A_i,Z_i) + B(A_i,Z_i) \over kT } \right ] \ , \label{eq1} \tag{1} \end{equation} where $A_i$ is the atomic number (number of neutrons + protons on the nulceus), $Z_i$ is the charge (number of protons), $T$ is the temperature, $\rho$ is the mass density, $N_A$ is the Avogardo number, $\omega(T)$ is the temperature dependent partition function, $M(A_i,Z_i)$ is the mass of the nucleus, $B(A_i,Z_i)$ is the binding energy of the nucleus, and $\mu(A_i,Z_i)$, in the simplest case, is the chemical potential of the isotope \begin{equation} \mu(A_i,Z_i) = Z_i\mu_p + N_i\mu_n = Z_i\mu_p + (A_i-Z_i) \mu_n \ , \label{eq2} \tag{2} \end{equation} where $\mu_p$ is the chemical potential of the protons, $\mu_n$ is the chemical potential of the neutrons. The mass fractions of equation $\ref{eq1}$ are subject to two constraints, conservation of mass (baryon number) and charge, which are expressed as \begin{equation} \sum_i X_i= 1 \hskip 1.0in Y_e = \sum_i {Z_j \over A_i} X_i \ . \label{eq3} \tag{3} \end{equation} Given the triplet of input values $(T, \rho, Y_e)$, an NSE solution boils down to a two-dimensional root find for the chemical potentials of the protons $\mu_p$ and neutrons $\mu_n$. Two constraints and two unknowns.



The tool in public_nse.tbz puts a 47 isotope netrork into its NSE state. More serious NSE calculations could modify this tool to use more accurate nuclear data (e.g., ground state spins and temperature dependent partition functions), to add more elaborate couplings (e.g., Coulomb corrections), and to increase the number of isotopes. Still, the figures and movies below, which accompany this article, suggest this tool gives reasonable results for the assumptions made.

image
Abundances vs temperature for varying Ye:
ρ = 103 g cm-3    d1p0e3_yevary_3302_a_pdf.mp4   
ρ = 104 g cm-3    d1p0e4_yevary_3302_a_pdf.mp4   
ρ = 105 g cm-3    d1p0e5_yevary_3302_a_pdf.mp4   
ρ = 106 g cm-3    d1p0e6_yevary_3302_a_pdf.mp4   
ρ = 107 g cm-3    d1p0e7_yevary_3302_a_pdf.mp4   
ρ = 108 g cm-3    d1p0e8_yevary_3302_a_pdf.mp4   
ρ = 109 g cm-3    d1p0e9_yevary_3302_a_pdf.mp4   
image
Abundances vs Ye for varying temperature :
ρ = 103 g cm-3    d1p0e3_tvary_3302_a_pdf.mp4   
ρ = 104 g cm-3    d1p0e4_tvary_3302_a_pdf.mp4   
ρ = 105 g cm-3    d1p0e5_tvary_3302_a_pdf.mp4   
ρ = 106 g cm-3    d1p0e6_tvary_3302_a_pdf.mp4   
ρ = 107 g cm-3    d1p0e7_tvary_3302_a_pdf.mp4   
ρ = 108 g cm-3    d1p0e8_tvary_3302_a_pdf.mp4   
ρ = 109 g cm-3    d1p0e9_tvary_3302_a_pdf.mp4   
 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.