|
|||
Home Astronomy Research 2025 Neutrinos From De-excitation Radiative Opacity 2024 Neutrino Emission from Stars 2023 White Dwarfs & 12C(α,γ)16O 2023 MESA VI 2022 Earendel, A Highly Magnified Star 2022 Black Hole Mass Spectrum 2021 Skye Equation of State 2021 White Dwarf Pulsations & 22Ne Software Instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Adiabatic white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines Fermi-Dirac functions Polyhedra volume Plane - cube intersection Coating an ellipsoid Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Hydrodynamic test cases Galactic chemical evolution Universal two-body problem Circular and elliptical 3 body The pendulum Phyllotaxis MESA MESA-Web FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc AAS Journals 2025 AAS YouTube 2025 AAS Peer Review Workshops 2025 ASU Energy in Everyday Life 2025 MESA Classroom Other Stuff: Bicycle Adventures Illustrations Presentations Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
Below $\simeq 10^6$ K it is not energetic enough for nuclear reactions. Up to $\simeq 5 \times10^9$ K one uses a nuclear reaction network to follow abundance evolutions. Above $\simeq 5 \times10^9$ K it is energetic enough for forward and reverse reactions to be balanced, and abundances are in a state of nuclear statistical equilibrium (NSE). For Maxwell-Boltzmann statistics, the mass fractions $X_i$ of any isotope $i$ in NSE is \begin{equation} X_i(A_i,Z_i,T,\rho) = {A \over N_A \rho} \omega(T) \left ( 2\pi kT M(A_i,Z_i) \over h^2 \right )^{3/2} \exp \left [ { \mu(A_i,Z_i) + B(A_i,Z_i) \over kT } \right ] \ , \label{eq1} \tag{1} \end{equation} where $A_i$ is the atomic number (number of neutrons + protons on the nulceus), $Z_i$ is the charge (number of protons), $T$ is the temperature, $\rho$ is the mass density, $N_A$ is the Avogardo number, $\omega(T)$ is the temperature dependent partition function, $M(A_i,Z_i)$ is the mass of the nucleus, $B(A_i,Z_i)$ is the binding energy of the nucleus, and $\mu(A_i,Z_i)$, in the simplest case, is the chemical potential of the isotope \begin{equation} \mu(A_i,Z_i) = Z_i\mu_p + N_i\mu_n = Z_i\mu_p + (A_i-Z_i) \mu_n \ , \label{eq2} \tag{2} \end{equation} where $\mu_p$ is the chemical potential of the protons, $\mu_n$ is the chemical potential of the neutrons. The mass fractions of equation $\ref{eq1}$ are subject to two constraints, conservation of mass (baryon number) and charge, which are expressed as \begin{equation} \sum_i X_i= 1 \hskip 1.0in Y_e = \sum_i {Z_j \over A_i} X_i \ . \label{eq3} \tag{3} \end{equation} Given the triplet of input values $(T, \rho, Y_e)$, an NSE solution boils down to a two-dimensional root find for the chemical potentials of the protons $\mu_p$ and neutrons $\mu_n$. Two constraints and two unknowns. The tool in public_nse.tbz puts a 47 isotope netrork into its NSE state. More serious NSE calculations could modify this tool to use more accurate nuclear data (e.g., ground state spins and temperature dependent partition functions), to add more elaborate couplings (e.g., Coulomb corrections), and to increase the number of isotopes. Still, the figures and movies below, which accompany this article, suggest this tool gives reasonable results for the assumptions made. |
||
|
Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate. |
---|