Nuclear Reaction Networks


Astronomy Research
   Radiative Opacity
   2024 Neutrino Emission from Stars
   2023 White Dwarfs & 12C(α,γ)16O
   2023 MESA VI
   2022 Earendel, A Highly Magnified Star
   2022 Black Hole Mass Spectrum
   2021 Skye Equation of State
   2021 White Dwarf Pulsations & 22Ne
   Software Instruments
     Stellar equation of states
     EOS with ionization
     EOS for supernovae
     Chemical potentials
     Stellar atmospheres

     Voigt Function
     Jeans escape
     Polytropic stars
     Cold white dwarfs
     Adiabatic white dwarfs

     Cold neutron stars
     Stellar opacities
     Neutrino energy loss rates
     Ephemeris routines
     Fermi-Dirac functions

     Polyhedra volume
     Plane - cube intersection
     Coating an ellipsoid

     Nuclear reaction networks
     Nuclear statistical equilibrium
     Laminar deflagrations
     CJ detonations
     ZND detonations

     Fitting to conic sections
     Unusual linear algebra
     Derivatives on uneven grids
     Pentadiagonal solver
     Quadratics, Cubics, Quartics

     Supernova light curves
     Exact Riemann solutions
     1D PPM hydrodynamics
     Hydrodynamic test cases
     Galactic chemical evolution

     Universal two-body problem
     Circular and elliptical 3 body
     The pendulum


     Zingale's software
     Brown's dStar
     GR1D code
     Iliadis' STARLIB database
     Herwig's NuGRID
     Meyer's NetNuc

AAS Journals
   2024 AAS YouTube
   2024 AAS Peer Review Workshops

2024 ASU Energy in Everyday Life
2024 MESA Classroom
Outreach and Education Materials

Other Stuff:
   Bicycle Adventures

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Before using these reaction networks you should probably glance at my method of madness, Raph Hix's & Brad Meyer's excellent article, Brad Meyer's annual review article, George Wallerstein's review of modern physics article, and this National Nuclear Physics Summer School lectures on reaction networks.

There is a certain irremovable complexity associated with stiff systems of ordinary differential equations $$ \dot {{\bf y}} = {\bf f} \ ({\bf y}) \label{eq1} \tag{1} $$ when the right hand side is a complicated function, the Jacobian matrix $\tilde{{\bf J}}$ is sparse, and one wants a high-quality time integration. The tools below use an analytical Jacobian, a variable-order Bader-Deuflhard integration method, and MA28 sparse linear algebra. The reaction network and thermodynamics are integrated simultaneously. That is, they are fully coupled. Hydrostatic, one-step, adiabatic expansion, self-heating at constant density, self-heating through constant pressure, and arbitrary thermodynamic histories are currently supported.

These reaction networks are a snapshot of my current research efforts. If you want to put these reaction networks in a stellar evolution or hydrodynamics software instrument, and/or you want the networks to execute as efficiently as possible, feel free to contact me.

Make H & He

* Big Bang
Burn hydrogen

* pp chains

* cno cycles

* pp + cno

* hotcno + rp

* pp+hotcno+rp

* 8 isotopes

* 7 isotopes

* 13 isotopes

* 19 isotopes

* 21 isotopes

* Full H + He

Eat neutrons

* s-process
General network

* torch


Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.