*
Cococubed.com


Quadratics, Cubics & Quartics




Home

Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum
   Phyllotaxis

   MESA
   MESA-Web
   FLASH

   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
Presentations
Illustrations
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials
2022 ASU Solar Systems Astronomy
2022 ASU Energy in Everyday Life

AAS Journals
AAS Youtube
2022 Earendel, A Highly Magnified Star
2022 TV Columbae, Micronova
2022 White Dwarfs and 12C(α,γ)16O
2022 Black Hole mass spectrum
2022 MESA VI
2022 MESA in Don't Look Up
2022 MESA Marketplace
2012-2023 MESA Schools
2022 MESA Classroom
2021 Bill Paxton, Tinsley Prize


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

The tool qcq.tbz contains routines to directly solve quadratic, cubic and quartic equations with real or complex coefficients (i.e., no iterative root finding). Examples where these root finders find utility is in direct, least-squares fitting of a parabola to noisy data, the intersection points of two conic sections, the distance of closest approach of two ellipses, and Alhazen's problem.



image
 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.